【BZOJ3239】Discrete Logging BSGS
【BZOJ3239】Discrete Logging
Description
Given a prime P, 2 <= P < 231, an integer B, 2 <= B < P, and an integer N, 2 <= N < P, compute the discrete logarithm of N, base B, modulo P. That is, find an integer L such that
BL== N (mod P)
Input
Read several lines of input, each containing P,B,N separated by a space,
Output
for each line print the logarithm on a separate line. If there are several, print the smallest; if there is none, print "no solution".
The solution to this problem requires a well known result in number theory that is probably expected of you for Putnam but not ACM competitions. It is Fermat's theorem that states
B(P-1)== 1 (mod P)
for any prime P and some other (fairly rare) numbers known as base-B pseudoprimes. A rarer subset of the base-B pseudoprimes, known as Carmichael numbers, are pseudoprimes for every base between 2 and P-1. A corollary to Fermat's theorem is that for any m
B(-m)== B(P-1-m)(mod P) .
Sample Input
5 2 2
5 2 3
5 2 4
5 3 1
5 3 2
5 3 3
5 3 4
5 4 1
5 4 2
5 4 3
5 4 4
12345701 2 1111111
1111111121 65537 1111111111
Sample Output
1
3
2
0
3
1
2
0
no solution
no solution
1
9584351
题解:BSGS裸题
#include <cstdio>
#include <cstring>
#include <map>
#include <iostream>
#include <cmath>
using namespace std;
typedef long long ll;
map<ll,int> mp;
int main()
{
ll A,B,P,i,x,y,m;
while(scanf("%lld%lld%lld",&P,&A,&B)!=EOF)
{
mp.clear(),mp[B]=0,m=ceil(sqrt(P));
for(x=1,i=1;i<=m;i++) x=x*A%P,mp[x*B%P]=i;
for(y=1,i=1;i<=m;i++)
{
y=y*x%P;
if(mp.find(y)!=mp.end())
{
printf("%lld\n",i*m-mp[y]);
break;
}
}
if(i==m+1) printf("no solution\n");
}
return 0;
}
【BZOJ3239】Discrete Logging BSGS的更多相关文章
- 【bzoj3239】Discrete Logging
[吐槽] 这题和[bzoj]2480一毛一样. 就是输入顺序和输出变了一下. 传送门:http://www.cnblogs.com/chty/p/6043707.html
- 【poj2417】 Discrete Logging
http://poj.org/problem?id=2417 (题目链接) 题意 求解$${A^X≡B~(mod~P)}$$ Solution BSGS. 细节 map TLE飞,只好写了hash挂链 ...
- 【BZOJ】【3239】Discrete Logging
BSGS BSGS裸题,嗯题目中也有提示:求a^m (mod p)的逆元可用快速幂,即 pow(a,P-m-1,P) * (a^m) = 1 (mod p) /******************** ...
- 【BZOJ2242】计算器(BSGS,快速幂)
[BZOJ2242]计算器(BSGS,快速幂) 题面 BZOJ 洛谷 1.给定y.z.p,计算y^z mod p 的值: 2.给定y.z.p,计算满足xy ≡z(mod p)的最小非负整数x: 3.给 ...
- 【POJ 2417】 Discrete Logging
[题目链接] http://poj.org/problem?id=2417 [算法] Baby-Step,Giant-Step算法 [代码] #include <algorithm> #i ...
- 【BZOJ2242】[SDOI2011]计算器 BSGS
[BZOJ2242][SDOI2011]计算器 Description 你被要求设计一个计算器完成以下三项任务: 1.给定y,z,p,计算Y^Z Mod P 的值: 2.给定y,z,p,计算满足xy≡ ...
- 【译文】Java Logging
本文讲Java内置的java.util.logging软件包中的 api.主要解释怎样使用该api添加logging到你的application中,怎样加配置它等.但是本文不谈你应该把什么东西写到日志 ...
- 【BZOJ-3122】随机数生成器 BSGS
3122: [Sdoi2013]随机数生成器 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1362 Solved: 531[Submit][Sta ...
- 【poj3358】消因子+BSGS 或 消因子+欧拉定理 两种方法
题意:给你一个分数,求它在二进制下的循环节的长度,还有第一个循环节从哪一位开始. For example, x = 1/10 = 0.0001100110011(00110011)w and 0001 ...
随机推荐
- Centos硬件信息
1.物理cpu个数 #cat /proc/cpuinfo | grep "physical id" | sort | uniq | wc -l 2.每个物理cpu核数 #cat / ...
- [Unity3D]UI方案及制作细节(NGUI/EZGUI/原生UI系统)
转载请留下本文原始链接,谢谢.本文会不定期更新维护,最近更新于2013.09.17. http://blog.sina.com.cn/s/blog_5b6cb9500101bplv.html ...
- Struts Spring Plugin注意点
Settings The following settings can be customized. See the developer guide. Setting Description Defa ...
- (一)Shiro笔记——简介、 架构分析
1. Shiro是什么 Apache Shiro是一个强大灵活的开源安全框架,可以完全处理身份验证,授权,企业会话管理和加密. Apache Shiro的首要目标是易于使用和理解. 安全有时可能非常复 ...
- 预装WIN8改装WIN7之BIOS设置
不少预装WIN8/10的朋友觉得WIN8/10不好用,想改装WIN7,可改装之后常常出现各种问题,甚至不能启动,往往是BIOS设置不当. 本文以联想小新V2000 预装WIN8.1中文版为例,说说WI ...
- 符合BME风格的弹窗\菜单\表格\文件上传控件
1.弹窗 2.菜单 3.表格 4.文件上传控件 笔记补充......
- GoogLeNet模型的微调
我从零开始训练了GoogLeNet模型. 但它没有给我带来希望的结果. 作为替代,我想对我的数据集中的GoogLeNet模型进行微调. 有谁知道我应该遵循什么步骤? 采纳答案: 假设你正在尝试做图像分 ...
- 深入PHP中慎用双等于(==)的详解
PHP比较运算符出现的频率实在是太高了,尤其是 ==if(a == b){// do something}但是,你真的掌握了 == 了吗?细节很重要!来看下面的代码,说出你认为正确的答案var_dum ...
- Intellj IDEA14.0.2启动异常之3分钟修复
今天是周一,刚到公司启动心爱的IDEA,,突然启动到一半,就抛异常了,直接弹窗,报例如以下的异常: java.lang.RuntimeException: com.intellij.ide.plugi ...
- Emmet:HTML/CSS编写插件
http://www.iteye.com/news/27580 用法: http://docs.emmet.io/cheat-sheet/ sublime 2 添加:1. Ctrl+Alt+p -&g ...