Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 4941    Accepted Submission(s): 1957

Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.

 
Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.

 
Output
You should output the answer modulo p.
 
Sample Input
2
1 2 5
2 1 5
 
Sample Output
3
3

Hint

Hint

For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on.
The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are:
put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.

 
Source
 
Recommend
gaojie   |   We have carefully selected several similar problems for you:  3033 3038 3036 3035 3034 

题目大意:

由n个不同的盒子,在每个盒子中放一些求(可以不放),使得总球数小雨等于m,求方案数(mod p).
1<=n,m<=10^9,1<p<10^5,保证p是素数

分析:
设最后放了k个球,根据"隔板法"由方案数C(k+n-1,n-1),:
ans=C(n-1,n-1)+C(n,n-1)+C(n+1,n-1)+……+C(n+m-2,n-1)+C(n+m-1,n-1)
     =C(n+m,n);(mod p)
由于数据范围很大,C(n,m)=C(n-1,m)+C(n-1,m-1);显然会TLE
最后组合数还要mod p,这时候 Lucas定理 闪亮登场
============================================
Lucas定理(shenben简单总结版)
============================================
Lucas定理1:
  Lucas(n,m,p)=cm(n%p,m%p)*Lucas(n/p,m/p,p);{其中cm(a,b)=C(a,b)%p;Lucas(x,0,p)=1;}
Lucas定理2:
  把n写成p进制a[n]a[n-1]……a[0];
  把m写成p进制b[n]b[n-1]……b[0];(不够位数的话,显然前面是 0)
则:C(a[n],b[n])*C(a[n-1],b[n-1])*……*C(a[0],b[0])
   =C(n,m) (mod p);
ps:Lucas最大的数据处理能力是p在10^5左右。

#include<cstdio>
#include<iostream>
using namespace std;
typedef long long ll;
const int N=1e5+;
ll n,m,p,a[N]={};
ll fpow(ll a,ll b){
ll res=;
for(;b;b>>=,a=a*a%p) if(b&) res=res*a%p;
return res;
}
ll C(ll n,ll m){
if(m>n) return ;
return a[n]*fpow(a[m],p-)%p*fpow(a[n-m],p-)%p;
}
ll lucas(ll n,ll m){
if(!m) return ;
return C(n%p,m%p)*lucas(n/p,m/p)%p;
}
int main(){
int T;cin>>T;
while(T--){
cin>>n>>m>>p;
for(int i=;i<=p;i++) a[i]=a[i-]*i%p;
cout<<lucas(n+m,n)<<'\n';
}
return ;
}

HDU3037 附Lucas简单整理的更多相关文章

  1. .NET Web开发技术简单整理

    在最初学习一些编程语言.一些编程技术的时候,做的更多的是如何使用该技术,如何更好的使用该技术解决问题,而没有去关注它的相关性.关注它的理论支持,这种学习技术的方式是短平快.其实工作中有时候也是这样,公 ...

  2. 转载:.NET Web开发技术简单整理

    在最初学习一些编程语言.一些编程技术的时候,做的更多的是如何使用该技术,如何更好的使用该技术解决问题,而没有去关注它的相关性.关注它的理论支持,这种学习技术的方式是短平快.其实工作中有时候也是这样,公 ...

  3. MYBATIS 简单整理与回顾

    这两天简单整理了一下MyBatis 相关api和jar包这里提供一个下载地址,免得找了 链接:http://pan.baidu.com/s/1jIl1KaE 密码:d2yl A.简单搭建跑项目 2.进 ...

  4. 哪些CSS是可以被继承的--简单整理

    那些CSS是可以被继承的--简单整理1.文本相关属性是继承的:font-size,font-family,line-height,text-index等2.列表相关属性是继承的:list-style- ...

  5. .NET Web开发技术简单整理 转

    .NET Web开发技术简单整理 原文:http://www.cnblogs.com/SanMaoSpace/p/3157293.html 在最初学习一些编程语言.一些编程技术的时候,做的更多的是如何 ...

  6. Web请求响应简单整理

      简单对Web请求响应如何处理进行的整理,难免有理解不到位,理解有偏差的地方,如有理解有误的地方,希望大牛批评指正. 1.Web开发的定义首先看看微软对Web开发的定义:Web开发是一个指代网页或网 ...

  7. 面试简单整理之JVM

    194.说一下 jvm 的主要组成部分?及其作用? JVM内存分为“堆”.“栈”和“方法区”三个区域,分别用于存储不同的数据. 堆内存用于存储使用new关键字所创建的对象: 栈内存用于存储程序运行时在 ...

  8. 《web前端设计基础——HTML5、CSS3、JavaScript》 张树明版 简答题简单整理

    web前端设计基础——HTML5.CSS3.JavaScript 简答题整理 第一章 (1)解释一下名词的含义:IP地址.URL.域名   iP定义了如何连入因特网,以及数据如何在主机间传输的标准. ...

  9. 简单整理React的Context API

    之前做项目时经常会遇到某个组件需要传递方法或者数据到其内部的某个子组件,中间跨越了甚至三四层组件,必须层层传递,一不小心哪层组件忘记传递下去了就不行.然而我们的项目其实并没有那么复杂,所以也没有使用r ...

随机推荐

  1. [TypeScript] Use the JavaScript “in” operator for automatic type inference in TypeScript

    Sometimes we might want to make a function more generic by having it accept a union of different typ ...

  2. vue - 总结build.js

    1. 导入外部包,用关键字 const :ES2015->不可变量 内部使用变量,let -> 块级声明 2.无分号结尾(我猜大概是用了es6变量,避免了es5应缺少分号出现的一些问题) ...

  3. 关于部分Android手机安装apk,无法获取正常的logo

    最近出现过类似的问题,主要出现是在,MediaPad X1 7.0和MediaPad M1 8.0. 发布应用的时候明明配置好了图标的,但是始终找不到原因,郁闷了好几个小时,也浪费了好几个小时. 如果 ...

  4. android:ellipsize实现跑马灯效果总结

    最近无意间看到了涉及到跑马灯效果的代码,于是在网上查阅了很多资料,在这里对自己看的一些文章进行一下总结,顺便加上自己的一些体会. 让我们一步步逐渐向下. 首先我们要实现走马灯这样一个效果,通常来说都是 ...

  5. csv导出文件中有html

    最近遇到再导出csv文件时,csv文件中包含html代码 一开始以为导出的数据量太大,减少数据后仍然出现html代码,此时想到应该与数据有关,仔细观察csv中的数据,有的单元里面是空值, 对比原始数据 ...

  6. C#--I/O流操作文本文件之StreamWrite类和StreamReader类

    使用I/O流操作文本文件时主要用到StreamWrite类和StreamRead类. 1.StreamWrite类 (1)StreamWrite类专门用来处理文本文件的类.能够方便地想文本文件里写入字 ...

  7. RIP协议

    1.概念:RIP协议是一种内部网关协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递.        RIP协议基于距离矢量算法(DistanceVectorAlgorit ...

  8. html5_websocket_tomcat8

    目录 前言 后端 浏览器前端 java的client 注意 前言 HTML5 WebSocket实现了服务器与浏览器的双向通讯,开销小,实时性高,常用于即时通讯和对信息实时性要求比较高的应用. 下面讲 ...

  9. UVA 11885 - Number of Battlefields(斐波那契)

    11885 - Number of Battlefields 题意:给周长.求能围成的战场数目.不包含矩形. 思路:详细的递推没递推出来,可是看了网上一个规律,假设包含矩形的答案应该是斐波那契数列(可 ...

  10. nginx configure参数

    下面是nginx源码程序的configure参数: --prefix= 指向安装目录.默认为:/usr/local/nginx --sbin-path= 指定执行程序文件存放位置.默认为:prefix ...