假设我们可以对每个位置快速维护一个数组,记录每个位置有哪些值是已经出现了的,哪些值是没有出现的,这样就可以决定修改的时候到底是 *2 还是 +1了。

但是很可惜,并不存在功能这么强大的数组,所以只能另寻方法啦。。。。

因为修改总是连续的一段的,所以我们可以发现,对于每个数值来说,被它覆盖的位置也是一段一段的,并且所有数的段数之和<=总的操作数(因为还会发生一些段的合并)。

所以我们可以对每个数维护一个端点集合set,每次修改的时候就暴力插入一段区间,看一看可以产生多少次合并。

这样的话,虽然一次修改的复杂度可能会十分之大,但是因为一个端点在贡献一次合并之后就被从 set 里删去了(一次合并只会对应线段树中的一次区间修改),并且每次最多增加两个端点,所以可以证明最后总的复杂度是 O( M * log (N) ),常数略大。。。

(并且用set维护每个数的区间的时候细节特别多,一定要想清楚了再去写)

(rank 22/212)

Discription

In the School of Magic in Dirtpolis a lot of interesting objects are studied on Computer Science lessons.

Consider, for example, the magic multiset. If you try to add an integer to it that is already presented in the multiset, each element in the multiset duplicates. For example, if you try to add the integer 22 to the multiset {1,2,3,3}{1,2,3,3}, you will get {1,1,2,2,3,3,3,3}{1,1,2,2,3,3,3,3}.

If you try to add an integer that is not presented in the multiset, it is simply added to it. For example, if you try to add the integer 44 to the multiset {1,2,3,3}{1,2,3,3}, you will get {1,2,3,3,4}{1,2,3,3,4}.

Also consider an array of nn initially empty magic multisets, enumerated from 11 to nn.

You are to answer qq queries of the form "add an integer xx to all multisets with indices l,l+1,…,rl,l+1,…,r" and "compute the sum of sizes of multisets with indices l,l+1,…,rl,l+1,…,r". The answers for the second type queries can be large, so print the answers modulo 998244353998244353.

Input

The first line contains two integers nn and qq (1≤n,q≤2⋅1051≤n,q≤2⋅105) — the number of magic multisets in the array and the number of queries, respectively.

The next qq lines describe queries, one per line. Each line starts with an integer tt(1≤t≤21≤t≤2) — the type of the query. If tt equals 11, it is followed by three integers ll, rr, xx (1≤l≤r≤n1≤l≤r≤n, 1≤x≤n1≤x≤n) meaning that you should add xx to all multisets with indices from ll to rr inclusive. If tt equals 22, it is followed by two integers ll, rr (1≤l≤r≤n1≤l≤r≤n) meaning that you should compute the sum of sizes of all multisets with indices from ll to rr inclusive.

Output

For each query of the second type print the sum of sizes of multisets on the given segment.

The answers can be large, so print them modulo 998244353998244353.

Examples

Input
4 4
1 1 2 1
1 1 2 2
1 1 4 1
2 1 4
Output
10
Input
3 7
1 1 1 3
1 1 1 3
1 1 1 2
1 1 1 1
2 1 1
1 1 1 2
2 1 1
Output
4
8

Note

In the first example after the first two queries the multisets are equal to [{1,2},{1,2},{},{}][{1,2},{1,2},{},{}], after the third query they are equal to [{1,1,2,2},{1,1,2,2},{1},{1}][{1,1,2,2},{1,1,2,2},{1},{1}].

In the second example the first multiset evolves as follows:

{}→{3}→{3,3}→{2,3,3}→{1,2,3,3}→{1,1,2,2,3,3,3,3}{}→{3}→{3,3}→{2,3,3}→{1,2,3,3}→{1,1,2,2,3,3,3,3}.

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=200005,ha=998244353;
#define lc (o<<1)
#define mid (l+r>>1)
#define rc ((o<<1)|1)
inline int add(int x,int y){ x+=y; return x>=ha?x-ha:x;}
inline void ADD(int &x,int y){ x+=y; if(x>=ha) x-=ha;}
struct node{
int p,id;
bool operator <(const node &u)const{
return p==u.p?id<u.id:p<u.p;
}
};
set<node> s[maxn];
set<node> :: iterator it,her;
int d[maxn*4],tag[maxn*4],sum[maxn*4];
int n,m,Q,le,ri,w,len[maxn*4],ans,opt; inline void maintain(int o){ sum[o]=add(sum[lc],sum[rc]);} inline void work(int o,int der){
ADD(tag[o],der);
ADD(sum[o],der*(ll)len[o]%ha);
} inline void mul(int o,int der){
d[o]=d[o]*(ll)der%ha;
tag[o]=tag[o]*(ll)der%ha;
sum[o]=sum[o]*(ll)der%ha;
} inline void pushdown(int o){
if(d[o]!=1){
mul(lc,d[o]),mul(rc,d[o]);
d[o]=1;
} if(tag[o]){
work(lc,tag[o]),work(rc,tag[o]);
tag[o]=0;
}
} void build(int o,int l,int r){
d[o]=1,len[o]=r-l+1;
if(l==r) return;
build(lc,l,mid);
build(rc,mid+1,r);
} void umul(int o,int l,int r){
if(l>=le&&r<=ri){ mul(o,2); return;}
pushdown(o);
if(le<=mid) umul(lc,l,mid);
if(ri>mid) umul(rc,mid+1,r);
maintain(o);
} void uadd(int o,int l,int r){
if(l>=le&&r<=ri){ work(o,w); return;}
pushdown(o);
if(le<=mid) uadd(lc,l,mid);
if(ri>mid) uadd(rc,mid+1,r);
maintain(o);
} void query(int o,int l,int r){
if(l>=le&&r<=ri){ ADD(ans,sum[o]); return;}
pushdown(o);
if(le<=mid) query(lc,l,mid);
if(ri>mid) query(rc,mid+1,r);
} void Change(int num,int L,int R){
set<node> &S=s[num]; int fl=L,fr=R; it=S.lower_bound((node){L,0}); for(w=1;L<=R;it=S.lower_bound((node){L,0})){
if(it==S.end()){
le=L,ri=R,uadd(1,1,n);
break;
}
else if(it->id){
le=L,ri=min(it->p,R),umul(1,1,n);
L=ri+1;
if(R>=it->p) S.erase(it);
}
else{
le=L,ri=min(it->p-1,R);
if(le<=ri) uadd(1,1,n);
L=ri+1;
if(R>=it->p) S.erase(it);
}
} it=S.lower_bound((node){fl,0});
her=S.lower_bound((node){fr,1}); if(it==S.begin()||(--it)->id) S.insert((node){fl,0});
if(her==S.end()||!her->id) S.insert((node){fr,1});
} inline void solve(){
build(1,1,n); while(Q--){
scanf("%d",&opt);
if(opt==1){
scanf("%d%d%d",&le,&ri,&w);
Change(w,le,ri);
}
else{
scanf("%d%d",&le,&ri),ans=0;
query(1,1,n),printf("%d\n",ans);
}
}
} int main(){
scanf("%d%d",&n,&Q);
solve();
return 0;
}

  

CodeForces - 981G Magic multisets的更多相关文章

  1. Codeforces 710C. Magic Odd Square n阶幻方

    C. Magic Odd Square time limit per test:1 second memory limit per test:256 megabytes input:standard ...

  2. Codeforces 670D1. Magic Powder - 1 暴力

    D1. Magic Powder - 1 time limit per test: 1 second memory limit per test: 256 megabytes input: stand ...

  3. [递推+矩阵快速幂]Codeforces 1117D - Magic Gems

    传送门:Educational Codeforces Round 60 – D   题意: 给定N,M(n <1e18,m <= 100) 一个magic gem可以分裂成M个普通的gem ...

  4. CodeForces 670D2 Magic Powder 二分

    D2. Magic Powder - 2 The term of this problem is the same as the previous one, the only exception — ...

  5. 【模拟】Codeforces 710C Magic Odd Square

    题目链接: http://codeforces.com/problemset/problem/710/C 题目大意: 构造一个N*N的幻方.任意可行解. 幻方就是每一行,每一列,两条对角线的和都相等. ...

  6. codeforces 632F. Magic Matrix

    题目链接 给一个n*n的矩阵, 问是否对角线上的元素全都为0, a[i][j]是否等于a[j][i], a[i][j]是否小于等于max(a[i][k], a[j][k]), k为任意值. 前两个都好 ...

  7. CodeForces - 710C Magic Odd Square(奇数和幻方构造)

    Magic Odd Square Find an n × n matrix with different numbers from 1 to n2, so the sum in each row, c ...

  8. Codeforces 632F Magic Matrix(bitset)

    题目链接  Magic Matrix 考虑第三个条件,如果不符合的话说明$a[i][k] < a[i][j]$ 或 $a[j][k] < a[i][j]$ 于是我们把所有的$(a[i][j ...

  9. codeforces C. Magic Formulas 解题报告

    题目链接:http://codeforces.com/problemset/problem/424/C 题目意思:给出 n 个数:p1, p2, ..., pn,定义: q1 = p1 ^ (1 mo ...

随机推荐

  1. Django请求原理

    总结一下: 1. 进来的请求转入/hello/. 2. Django通过在ROOT_URLCONF配置来决定根URLconf. 3. Django在URLconf中的所有URL模式中,查找第一个匹配/ ...

  2. 7月19日day11总结

    今天学习过程和小结 上午进行测试复习了 1,hdfs中namenode和datanode作用 2,hdfs副本存放机制 3,mapreduce计算处理过程 4,格式化hdfs命令 5,hdfs的核心配 ...

  3. vue.单选和多选,纯css自定义单选框样式

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. HDU2157 How many ways??---(邻接矩阵,图论,矩阵快速幂)

    http://acm.hdu.edu.cn/showproblem.php?pid=2157 How many ways?? Time Limit: 2000/1000 MS (Java/Others ...

  5. RPC-Thrift(一)

    一个简单例子 IDL文件如下,详细的IDL语法参考官方文档http://thrift.apache.org/docs/idl. 通过代码生成工具得到两个文件:HelloService.java和Res ...

  6. jQuery操纵DOM

    一.基本操作 1.html() - 类似于原生DOM的innerHTML属性 *获取 - html(); *设置 - html("html代码"); 2.val() - 类似于原生 ...

  7. 【BZOJ2460】【BJOI2011】元素 [线性基]

    元素 Time Limit: 20 Sec  Memory Limit: 128 MB[Submit][Status][Discuss] Description 相传,在远古时期,位于西方大陆的 Ma ...

  8. codechef T6 Pishty and tree dfs序+线段树

    PSHTTR: Pishty 和城堡题目描述 Pishty 是生活在胡斯特市的一个小男孩.胡斯特是胡克兰境内的一个古城,以其中世纪风格 的古堡和非常聪明的熊闻名全国. 胡斯特的镇城之宝是就是这么一座古 ...

  9. [转载]解决clickonce不支持administer权限问题

    转自ClickOnce deployment vs. requestedExecutionLevel = requireAdministrator ClickOnce方式部署应用简单方便,估计很多人都 ...

  10. [bzoj2251][2010Beijing Wc]外星联络——后缀数组+暴力求解

    Brief Description 找到 01 串中所有重复出现次数大于 1 的子串.并按字典序输出他们的出现次数. Algorithm Design 求出后缀数组之后,枚举每一个后缀,对于每个后缀从 ...