4514: [Sdoi2016]数字配对

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 1606  Solved: 608
[Submit][Status][Discuss]

Description

有 n 种数字,第 i 种数字是 ai、有 bi 个,权值是 ci。
若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,
那么这两个数字可以配对,并获得 ci×cj 的价值。
一个数字只能参与一次配对,可以不参与配对。
在获得的价值总和不小于 0 的前提下,求最多进行多少次配对。

Input

第一行一个整数 n。
第二行 n 个整数 a1、a2、……、an。
第三行 n 个整数 b1、b2、……、bn。
第四行 n 个整数 c1、c2、……、cn。 

Output

一行一个数,最多进行多少次配对

Sample Input

3
2 4 8
2 200 7
-1 -2 1

Sample Output

4

HINT

n≤200,ai≤10^9,bi≤10^5,∣ci∣≤10^5

Source

鸣谢Menci上传

分析:

其实不难发现这是一个网络流的题目...

然后考虑如何建图...

我们发现题目中有用的信息大概就只有一句话了:

若两个数字 ai、aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数,

于是,我们考虑如何利用这句话...如果我们把$a_x$分解质因数,那么如果存在$\frac{a_i}{a_j}=p$,那么就代表$a_i$的$x$个质因子里面有$x-1$和$a_j$的指数相同,并且剩下的那个质因子的指数比$a_j$多$1$,于是,我们考虑记$f[i]$代表$a_i$的质因子指数之和,那么一定是$f[i]$为奇数的点和$f[i]$为偶数的点之间右边相连,这就告诉我们这是一张二分图...

于是我们从$S$向所有的$f[i]$为奇数的点连$<S,i,b[i],0>$的边,从$f[i]$为偶数的点向$T$连$<i,T,b[i],0>$的边,然后对于所有合法的点对之间从奇数$f[i]$向偶数$f[i]$连$<x,y,inf,c[x]*x[y]>的边,然后如果要满足费用不小于$0$,那么我们跑最大费用最大流,如果当前增广的流更新答案之后答案不合法就直接停止增广输出答案...

一定要抓住题目中给出的信息进行转化,多去考虑和算法有关的性质...

代码:

#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#include<map>
//by NeighThorn
#define inf 0x3f3f3f3f3f3f3f
using namespace std; const int maxn=200+5,maxm=32000+5,maxe=100000+5; int n,a[maxn],b[maxn],c[maxn];
int cnt,no[maxn],vis[maxm],pri[maxm];
int S,T,hd[maxn],fl[maxe],to[maxe],nxt[maxe],Min[maxn],from[maxn];
long long w[maxe],dis[maxn]; map<int,int> mp; inline void prework(void){
for(int i=2;i<=32000;i++){
if(!vis[i])
vis[i]=1,pri[++cnt]=i,mp[i]=1;
for(int j=1;j<=cnt&&pri[j]*i<=32000;j++){
vis[i*pri[j]]=1;
if(i%pri[j]==0) break;
}
}
} inline void add(int x,int y,int s,long long l){
w[cnt]= l;fl[cnt]=s;to[cnt]=y;nxt[cnt]=hd[x];hd[x]=cnt++;
w[cnt]=-l;fl[cnt]=0;to[cnt]=x;nxt[cnt]=hd[y];hd[y]=cnt++;
} inline bool spfa(void){
for(int i=S;i<=T;i++) dis[i]=-inf,Min[i]=0x3f3f3f3f;
queue<int> q;q.push(S),dis[S]=0;vis[S]=1;
while(!q.empty()){
int top=q.front();q.pop();vis[top]=0;
for(int i=hd[top];i!=-1;i=nxt[i])
if(fl[i]&&dis[to[i]]<dis[top]+w[i]){
from[to[i]]=i;
dis[to[i]]=dis[top]+w[i];
Min[to[i]]=min(Min[top],fl[i]);
if(!vis[to[i]])
vis[to[i]]=1,q.push(to[i]);
}
}
return dis[T]!=-inf;
} inline long long find(void){
for(int i=T;i!=S;i=to[from[i]^1])
fl[from[i]]-=Min[T],fl[from[i]^1]+=Min[T];
return dis[T]*Min[T];
} inline int mcmf(void){
long long t,mincost=0,maxflow=0;
while(spfa()){
t=find();
if(mincost+t>=0) mincost+=t,maxflow+=Min[T];
else{
maxflow+=mincost/abs(dis[T]);
return maxflow;
}
}
return maxflow;
} signed main(void){
scanf("%d",&n);prework();S=0;
memset(hd,-1,sizeof(hd));T=n+1;
memset(vis,0,sizeof(vis));
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
for(int i=1;i<=n;i++) scanf("%d",&c[i]);
for(int i=1,tmp;i<=n;i++){
tmp=a[i];
for(int j=1;j<=cnt;j++)
while(tmp%pri[j]==0)
no[i]++,tmp/=pri[j];
if(tmp>1) no[i]++,mp[tmp]=1;
}
for(int i=1;i<=n;i++)
if(no[i]&1)
add(S,i,b[i],0);
else
add(i,T,b[i],0);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(a[i]%a[j]==0&&mp.find(a[i]/a[j])!=mp.end()){
if(no[i]&1) add(i,j,0x3f3f3f3f,1LL*c[i]*c[j]);
else add(j,i,0x3f3f3f3f,1LL*c[i]*c[j]);
}
printf("%d\n",mcmf());
return 0;
}

  


By NeighThorn

BZOJ 4514: [Sdoi2016]数字配对的更多相关文章

  1. 图论(费用流):BZOJ 4514 [Sdoi2016]数字配对

    4514: [Sdoi2016]数字配对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 820  Solved: 345[Submit][Status ...

  2. BZOJ 4514: [Sdoi2016]数字配对 [费用流 数论]

    4514: [Sdoi2016]数字配对 题意: 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数 ...

  3. BZOJ.4514.[SDOI2016]数字配对(费用流SPFA 二分图)

    BZOJ 洛谷 \(Solution\) 很显然的建二分图后跑最大费用流,但有个问题是一个数是只能用一次的,这样二分图两部分都有这个数. 那么就用两倍的.如果\(i\)可以向\(j'\)连边,\(j\ ...

  4. 4514: [Sdoi2016]数字配对

    Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ai/aj 是一个质数, 那么这两个数字可以配对 ...

  5. 4514: [Sdoi2016]数字配对 费用流

    链接 https://www.lydsy.com/JudgeOnline/problem.php?id=4514 思路 EK直接贪心做 <0的时候加上剩余返回 二分图a->b的时候 把b- ...

  6. 【bzoj4514】: [Sdoi2016]数字配对 图论-费用流

    [bzoj4514]: [Sdoi2016]数字配对 好像正常的做法是建二分图? 我的是拆点然后 S->i cap=b[i] cost=0 i'->T cap=b[i] cost=0 然后 ...

  7. 【BZOJ4514】[Sdoi2016]数字配对 费用流

    [BZOJ4514][Sdoi2016]数字配对 Description 有 n 种数字,第 i 种数字是 ai.有 bi 个,权值是 ci. 若两个数字 ai.aj 满足,ai 是 aj 的倍数,且 ...

  8. AC日记——[Sdoi2016]数字配对 bzoj 4514

    4514 思路: 很受伤现在,,测了那么多次不过的原因就是因为INF不够大: 解法有两种: 解法1: 把n个点按照质因数个数为奇或偶分为两个点集(很容易就可以想到): 然后,按照题目连边跑最大费用流: ...

  9. 【BZOJ 4514】[Sdoi2016]数字配对 费用流

    利用spfa流的性质,我直接拆两半,正解分奇偶(妙),而且判断是否整除且质数我用的是暴力根号,整洁判断质数个数差一(其他非spfa流怎么做?) #include <cstdio> #inc ...

随机推荐

  1. DDoS 攻击与防御:从原理到实践(下)

    欢迎访问网易云社区,了解更多网易技术产品运营经验. DDoS 攻击与防护实践 DDoS 攻击的实现方式主要有如下两种: 自建 DDoS 平台 现在有开源的 DDoS 平台源代码,只要有足够机器和带宽资 ...

  2. android service笔记

    1.service 默认在主线程运行,所以不能在service中直接做访问网络,操作文件等耗时操作,要另外开启线程 2.通过startservice开启的服务,一旦服务开启,这个服务和开启他的调用者之 ...

  3. React获取数据,假如为数组,使用map出现的问题

    在平时做项目的时候,使用到了redux, 如果获取服务器端的数据,例如返回一个  data = [1,2,3,4]data.map(item => item*2) , 这样使用的话如果数据正常获 ...

  4. C++学习007-使用exit退出进程

    使用exit可以实现退出当前进程. 如下 在程序接收到一个字符后,就退出进程 编写环境 vs2015 int main() { int a = 10, b = 20; std::cout <&l ...

  5. 问题 A: 完数

    问题 A: 完数 时间限制: 1 Sec  内存限制: 32 MB提交: 252  解决: 178[提交][状态][讨论版][命题人:外部导入] 题目描述 求1-n内的完数,所谓的完数是这样的数,它的 ...

  6. 移动端webapp如何隐藏浏览器的导航栏

    webapp如何隐藏浏览器的导航栏 在webapp开发中,手机浏览器的导航栏会让我们的页面看起来很怪异,这个时候我们就需要将导航栏给隐藏起来,隐藏的方法十分简单,只需要在head头中加入以下几行代码就 ...

  7. NO4——并查集

    int find(int x) { int r = x; while(father[r]!=r) r = father[r]; return r; } /* int find(int x) { if( ...

  8. python学习笔记-list的用法

    1.list的定义 list = [] list = [1,2,'a','b'](list中的元素不一定是一个类型) 2.list的操作 1)list.append(value) 2)list.ins ...

  9. CE-HTML简介

    1.典型的CE-HTML代码如下: <?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE html ...

  10. PAT 1040 有几个PAT

    https://pintia.cn/problem-sets/994805260223102976/problems/994805282389999616 字符串 APPAPT 中包含了两个单词 PA ...