Description

在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。
在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,
两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人
之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路
径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过
统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有
多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s
到t的最短路的数目;则定义
为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图
,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每
一个结点的重要程度。

Input

输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号
。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有
一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500 
,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间
的最短路径数目不超过 10^10

Output

输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。

Sample Input

4 4
1 2 1
2 3 1
3 4 1
4 1 1

Sample Output

1.000
1.000
1.000
1.000

HINT

社交网络如下图所示。

对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结
点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他
三个结点的重要程度也都是 1 。
 
 
 
正解:floyd
解题报告:
  n<=100,想怎么乱搞怎么乱搞。。。
  floyd求出两点间的最短路,顺便统计一下有多少条不同的最短路。
  然后第二遍再做的时候,按照定义统计一下每个结点的重要度ans[i],如果经过k存在i到j的最短路,那么ans[k]需要加入这次的贡献,顺便统计一下就可以了。
 //It is made by jump~
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#ifdef WIN32
#define OT "%I64d"
#else
#define OT "%lld"
#endif
using namespace std;
typedef long long LL;
const int MAXN = ;
int n,m;
int w[MAXN][MAXN];
double num[MAXN][MAXN];
double ans[MAXN]; inline int getint()
{
int w=,q=;
char c=getchar();
while((c<'' || c>'') && c!='-') c=getchar();
if (c=='-') q=, c=getchar();
while (c>='' && c<='') w=w*+c-'', c=getchar();
return q ? -w : w;
} inline void work(){
n=getint(); m=getint(); int x,y,z;
memset(w,/,sizeof(w));
for(int i=;i<=m;i++) {
x=getint(); y=getint(); z=getint();
w[x][y]=w[y][x]=z; num[x][y]=num[y][x]=;
}
for(int k=;k<=n;k++)
for(int i=;i<=n;i++)
if(i!=k)
for(int j=;j<=n;j++)
if(j!=k && j!=i) {
if(w[i][j]>w[i][k]+w[k][j]) {
w[i][j]=w[i][k]+w[k][j];
num[i][j]=num[i][k]*num[k][j];
}
else if(w[i][j]==w[i][k]+w[k][j]) num[i][j]+=num[i][k]*num[k][j];
} for(int k=;k<=n;k++)
for(int i=;i<=n;i++) if(i!=k)
for(int j=;j<=n;j++)
if(j!=k && j!=i) {
if(w[i][j]==w[i][k]+w[k][j]) ans[k]+=((num[i][k]*num[k][j])/num[i][j]);//作为这一对点的中转点重要程度贡献
}
for(int i=;i<=n;i++) printf("%.3lf\n",ans[i]);
} int main()
{
work();
return ;
}

codevs1796 社交网络的更多相关文章

  1. 《社交网络》里的评分公式——ELO排名系统

    <社交网络>里的Mark Zackburg被女朋友甩后,在舍友的启发下,充分发挥了技术宅男自娱自乐的恶搞天分,做出了Facemash网站,对学校女生的相貌进行排名打分,结果网站访问流量过大 ...

  2. bzoj1491 社交网络

    Description 在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象.不妨看这样的一个问题. 在一个社交圈子里有n个人,人与人之间有不同程度的关系.我们将这 ...

  3. 微信、QQ、微博、陌陌……社交网络的底层逻辑是什么?

      两 年前的社交产品泛滥犹在眼前,场景之胜几乎到了言必谈社交的地步.时任阿里新CEO陆兆禧举全集团之力,力推新社交产品“来往”,动作之大震惊整个互联 网.如今,陆兆禧早早退场,只留下一个硬汉的孤独背 ...

  4. BZOJ-1491 社交网络 FLoyd+乱搞

    感觉这两天一直在做乱搞的题... 1491: [NOI2007]社交网络 Time Limit: 10 Sec Memory Limit: 64 MB Submit: 1279 Solved: 732 ...

  5. 【BZOJ】1491: [NOI2007]社交网络(floyd)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1491 囧囧囧...................... 囧1:虽然自己想到做法了,但是操作的时候, ...

  6. 1491: [NOI2007]社交网络 - BZOJ

    Description Input Output输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度.Sample Input4 41 2 12 ...

  7. 【BZOJ 1491】 [NOI2007]社交网络

    Description Input Output 输出文件包括n 行,每行一个实数,精确到小数点后3 位.第i 行的实数表 示结点i 在社交网络中的重要程度. Sample Input 4 4 1 2 ...

  8. SNA社交网络算法

    社交网络需要用到igraph库,所以需要安装.可以在lfd的网站 http://www.lfd.uci.edu/~gohlke/pythonlibs/ 上下载python_igraph,具体的pyth ...

  9. BZOJ 1491 [NOI2007]社交网络

    1491: [NOI2007]社交网络 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1159  Solved: 660[Submit][Status] ...

随机推荐

  1. 男神的约会(状压dp)

    有一天男神约了学姐姐去看电影,电影院有一个活动,给你一个10*10的矩阵,每一个格子上都有一个0-9的整数,表示一共十种优惠券中的一种. 观众从左上角的格子开始走,走到右下角.每走到一个有着a号优惠券 ...

  2. kubectl工具的windows安装方法

    1.首先安装Chocolatey 参考:https://chocolatey.org/install#install-with-powershellexe windows7+以上操作系统的cmd sh ...

  3. 巨蟒django之权限7:动态生成一级&&二级菜单

    内容回顾: . 权限的控制 . 表结构设计 存权限的信息 用户表 - name 用户名 - pwd 密码 - roles 多对多 角色表 - name - permissions 多对多 权限表 - ...

  4. Toeplitz matrix

    w https://en.wikipedia.org/wiki/Toeplitz_matrix Proof of Stolz-Cesaro theorem | planetmath.org  http ...

  5. JFrame 居中显示

    场景:    在利用 JAVA  的 Swing 开发 C/S 架构 的前端界面 目的:    想让 JFrame 居中显示在整个 屏幕的正中位置 方法一:计算窗体的左上角坐标 JFrame fram ...

  6. java爬虫-简单爬取网页图片

    刚刚接触到“爬虫”这个词的时候是在大一,那时候什么都不明白,但知道了百度.谷歌他们的搜索引擎就是个爬虫. 现在大二.再次燃起对爬虫的热爱,查阅资料,知道常用java.python语言编程,这次我选择了 ...

  7. 斯坦福大学Andrew Ng - 机器学习笔记(7) -- 异常检测

    大概用了一个月,Andrew Ng老师的机器学习视频断断续续看完了,以下是个人学习笔记,入门级别,权当总结.笔记难免有遗漏和误解,欢迎讨论. 鸣谢:中国海洋大学黄海广博士提供课程视频和个人笔记,在此深 ...

  8. 创建spring boot 项目所遇到的问题

    1.添加完MySQL和jdbc约束后,在配置文件内spring.datasource.driver-class-name=com.mysql.jdbc.Driver 报错,显示找不到驱动包,原因是: ...

  9. F110 BADI增强

    F110*JOB*&------------------------------------------------------------- F110 BADI FI_BSTM_MC_EXI ...

  10. 剑指offer 面试12题

    面试12题: 题目:矩阵中的路径 题:请设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径.路径可以从矩阵中的任意一个格子开始,每一步可以在矩阵中向左,向右,向上,向下移动一个格 ...