Codeforces - 675D 可持久化Treap 树形操作
题意:模拟二叉树的构造过程,给出\(n\)个节点,每次从根插入,小于当前节点转到左儿子,否则右儿子,输出第\([2,n]\)个节点的父亲的权值
直接手动模拟会被链式结构T掉
网上找了下发现二叉树的性质是当前插入节点的父亲总是比它小的最大值或比它大的最小值(深度最深者为父亲)
既然这样就容易搞了,Treap分裂找出这两个值比较并维护即可(数据保证每个值只出现一次,更容易维护了)
93ms效率非常可观,可持久化Treap天下第一
#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<string>
#include<vector>
#include<stack>
#include<queue>
#include<set>
#include<map>
#define rep(i,j,k) for(register int i=j;i<=k;i++)
#define rrep(i,j,k) for(register int i=j;i>=k;i--)
#define erep(i,u) for(register int i=head[u];~i;i=nxt[i])
#define iin(a) scanf("%d",&a)
#define lin(a) scanf("%lld",&a)
#define din(a) scanf("%lf",&a)
#define s0(a) scanf("%s",a)
#define s1(a) scanf("%s",a+1)
#define print(a) printf("%lld",(ll)a)
#define enter putchar('\n')
#define blank putchar(' ')
#define println(a) printf("%lld\n",(ll)a)
#define IOS ios::sync_with_stdio(0)
using namespace std;
const int MAXN = 2e5+11;
const int INF = 0x3f3f3f3f;
const double EPS = 1e-7;
typedef long long ll;
const ll MOD = 1e9+7;
unsigned int SEED = 19260817;
ll read(){
ll x=0,f=1;register char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline int Rand(){
SEED=SEED*1103515245+12345;
return SEED/65536;
}
struct Treap{
int son[MAXN][2],root,tot;
int val[MAXN],fix[MAXN],size[MAXN];
int dep[MAXN];
#define lc son[o][0]
#define rc son[o][1]
void init(){
root=0;
son[0][0]=son[0][1]=0;
val[0]=fix[0]=size[0]=0;
dep[0]=0;
tot=1;
}
int node(int v,int d){
son[tot][0]=son[tot][1]=0;
val[tot]=v; fix[tot]=Rand();
size[tot]=1;dep[tot]=d;
return tot++;
}
void pu(int o){
size[o]=size[lc]+size[rc]+1;
}
void split(int o,int pivot,int &a,int &b){
if(!o){
a=b=0;
return;
}else if(val[o]>pivot){
b=o;
split(lc,pivot,a,lc);
pu(o);
}else{
a=o;
split(rc,pivot,rc,b);
pu(o);
}
}
int merge(int a,int b){
if(!a) return b;
if(!b) return a;
if(fix[a]<fix[b]){
son[a][1]=merge(son[a][1],b);
pu(a);
return a;
}else{
son[b][0]=merge(a,son[b][0]);
pu(b);
return b;
}
}
void insert(int v,int d){
int a,b,t=node(v,d);
split(root,v,a,b);
root=merge(merge(a,t),b);
}
int kth(int o,int k){
if(!o)return o;//
while(1){
if(k<=size[lc]){
o=lc;
}else if(k==size[lc]+1){
return o;
}else{
k-=size[lc]+1;
o=rc;
}
}
}
int insert(int v){
int a,b;
split(root,v-1,a,b);
int x=kth(a,size[a]);
int y=kth(b,1);
bool flag=0;
if(dep[x]<dep[y]) flag=1;
root=merge(a,b);
int d=(flag?dep[y]:dep[x])+1;
insert(v,d);
return flag?val[y]:val[x];
}
}tp;
int n,m,a[MAXN],ans[MAXN];
int main(){
while(cin>>n){
tp.init();
rep(i,1,n) a[i]=read();tp.insert(a[1],1);
rep(i,2,n) ans[i]=tp.insert(a[i]);
rep(i,2,n) printf("%d%c",ans[i],i==n?'\n':' ');
}
return 0;
}
Codeforces - 675D 可持久化Treap 树形操作的更多相关文章
- Codeforces - 38G 可持久化Treap 区间操作
题意:\(n\)个人排队,每个人有重要度\(p\)和不要脸度\(c\),如果第\(i\)个人的重要度大于第\(i-1\)个人的重要度,那么他们之间可以交换,不要脸度-1,交换后先前的第\(i\)个人也 ...
- BZOJ - 3224 可持久化Treap 树形操作
这个题目去年就做过了,这次稍微改了一下 都是基础操作 #include<iostream> #include<algorithm> #include<cstdio> ...
- UVALive 6145 Version Controlled IDE(可持久化treap、rope)
题目链接:https://icpcarchive.ecs.baylor.edu/index.php?option=com_onlinejudge&Itemid=8&page=show_ ...
- BZOJ 3595: [Scoi2014]方伯伯的Oj SBT+可持久化Treap
3595: [Scoi2014]方伯伯的Oj Time Limit: 6 Sec Memory Limit: 256 MBSubmit: 102 Solved: 54[Submit][Status ...
- 【模板】可持久化文艺平衡树-可持久化treap
题目链接 题意 对于各个以往的历史版本实现以下操作: 在第 p 个数后插入数 x . 删除第 p 个数. 翻转区间 [l,r],例如原序列是 \(\{5,4,3,2,1\}\),翻转区间 [2,4] ...
- 可持久化Treap
终于写了一次可持久化Treap,做的是可持久化序列的模板题. Treap Treap=Tree+Heap,是一个随机化的数据结构.它的每个节点至少有两个关键字,一个是我们要存储的\(val\),一个是 ...
- 可持久化Treap 赛前摸鱼笔记
1.基本结构 随机化工具 unsigned int SEED = 19260817; //+1s inline int Rand(){ SEED=SEED*1103515245+12345; retu ...
- 平衡树与可持久化treap
平衡树(二叉树) 线段树不支持插入or删除一个数于是平衡树产生了 常见平衡树:treap(比sbt慢,好写吧),SBT(快,比较好写,有些功能不支持),splay(特别慢,复杂度当做根号n来用,功能强 ...
- HDU - 6087 Rikka with Sequence (可持久化treap+倍增+重构)
题目链接 感谢Dream_Lolita的题解,经过无数次失败的尝试之后终于AC了... 线段树是维护区间信息的强大工具,但它的形态是固定的,只支持修改和删除操作,不支持插入.反转.复制.分裂合并等操作 ...
随机推荐
- ubuntu16.04 Mask_RCNN AlphaPose OpenPose Librealsense
#############MaskRCNNcource activate flappbirdcd /home/luo/Desktop/MyFile/MaskRCNN/MyOwnMaskRCNN1/sa ...
- 单机配置tomcat 8 集群
如何能在集群中的多个节点之间保持数据的一致性,会话(Session)信息是这些数据中最重要的一块. 本文当采用tomcat默认集群配置(<Cluster className="org. ...
- javascript总结18:javascript DOM简介
1 HTML DOM 使 JavaScript 有能力对 HTML 事件做出反应.在事件发生时,执行JavaScript 方法,做出交互. 2 格式: onclick=JavaScript脚本 3 H ...
- postfix 安装配置详解
[ref: http://blog.51yip.com/server/1382.html] [http://blog.chinaunix.net/uid-174325-id-1744019.html] ...
- 完美解决bootstrap模态框允许拖动后拖出边界的问题
使用bootstrap3版本 在网上看了很多方法,我觉得jquery-ui的实现方法是最简单有效的,具体实现方法 1.下载并引入jquery-ui插件 2.全局添加模态框允许拖动事件 $(docume ...
- MVC中的Controllers和View分别放到单独的项目中
将Controllers放到独立项目中: 第一步:创建Mvc.Controllers,Mvc.Models和UI三个项目 Mvc.Controllers用来编写Controllers Mvc.Mode ...
- [转]B+Tree图解
一, M阶B+树的定义(M阶是指一个节点最多能拥有的孩子数,M>2): 图1.1 3阶B+树 (1)根结点只有1个,分支数量范围[2,m]. (2)除根以外的非叶子结点,每个结点包含分支数 ...
- .properties文件的使用
在很多项目中我们都会使用到.properties文件对我们的项目进行配置,今天就介绍一下.properties文件在项目中的使用: 如下图,我们项目中有一个名为project.properties的p ...
- Delphi XE8中开发DataSnap程序常见问题和解决方法 (三)用TClientDataSet的“ProviderName”属性连接服务器时,无法找到服务器端的“DatasetProvier”
当我们在客户端用TClientDataSet的“ProviderName”属性连接服务器时,无法找到服务器端的“DatasetProvier”!! 问题原因:服务器端对提供服务的控件所属单元选择错误. ...
- 「BZOJ 2434」「NOI 2011」阿狸的打字机「AC自动机」
题意 有一个打字机,支持三种操作: 字符串末尾加一个小写字母 字符串末尾减一个字符 输出这个字符串 经过不超过\(n\)次操作后有\(m\)组询问:\((x,y)\),表示第\(x\)次输出第字符串在 ...