P3185 [HNOI2007]分裂游戏
$ \color{#0066ff}{ 题目描述 }$
聪聪和睿睿最近迷上了一款叫做分裂的游戏。 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子,每一轮每人选择 3 个瓶子。标号为 i,j,k, 并要保证 i < j , j < = k 且第 i 个瓶子中至少要有 1 颗巧克力豆,随后这个人从第 i 个瓶子中拿走一颗豆 子并在 j,k 中各放入一粒豆子(j 可能等于 k) 。如果轮到某人而他无法按规则取豆子,那么他将输 掉比赛。胜利者可以拿走所有的巧克力豆! 两人最后决定由聪聪先取豆子,为了能够得到最终的巧克力豆,聪聪自然希望赢得比赛。他思考 了一下,发现在有的情况下,先拿的人一定有办法取胜,但是他不知道对于其他情况是否有必胜 策略,更不知道第一步该如何取。他决定偷偷请教聪明的你,希望你能告诉他,在给定每个瓶子 中的最初豆子数后是否能让自己得到所有巧克力豆,他还希望你告诉他第一步该如何取,并且为 了必胜,第一步有多少种取法? 假定 1 < n < = 21,p[i] < = 10000
\(\color{#0066ff}{输入格式}\)
输入文件第一行是一个整数t表示测试数据的组数,接下来为t组测试数据(t<=10)。每组测试数据的第一行是瓶子的个数n,接下来的一行有n个由空格隔开的非负整数,表示每个瓶子中的豆子数。
\(\color{#0066ff}{输出格式}\)
对于每组测试数据,输出包括两行,第一行为用一个空格两两隔开的三个整数,表示要想赢得游戏,第一步应该选取的3个瓶子的编号i,j,k,如果有多组符合要求的解,那么输出字典序最小的一组。如果无论如何都无法赢得游戏,那么输出用一个空格两两隔开的三个-1。第二行表示要想确保赢得比赛,第一步有多少种不同的取法。
\(\color{#0066ff}{输入样例}\)
2
4
1 0 1 5000
3
0 0 1
\(\color{#0066ff}{输出样例}\)
0 2 3
1
-1 -1 -1
0
\(\color{#0066ff}{数据范围与提示}\)
none
\(\color{#0066ff}{题解}\)
根据题目,得到一个很重要的东西,每个豆子都是一个单独的游戏且互不影响!
于是就可以上SG定理了
可以记忆化搜索出每个点的SG,再把所有豆子的SG异或起来判断是否一定赢
至于方案。。。老兄,n才21,岂不是随便搞??
直接枚举答案,判断是否合法即可qwq
#include<bits/stdc++.h>
#define LL long long
LL in() {
char ch; LL x = 0, f = 1;
while(!isdigit(ch = getchar()))(ch == '-') && (f = -f);
for(x = ch ^ 48; isdigit(ch = getchar()); x = (x << 1) + (x << 3) + (ch ^ 48));
return x * f;
}
bool have[22];
bool vis[10000];
int sg[22], n, t[22];
int work(int now) {
if(now == n) return 0;
if(have[now]) return sg[now];
have[now] = true;
for(int i = now + 1; i <= n; i++) work(i);
for(int i = now + 1; i <= n; i++)
for(int j = now + 1; j <= n; j++)
vis[sg[i] ^ sg[j]] = true;
for(sg[now] = 0; vis[sg[now]]; sg[now]++);
for(int i = now + 1; i <= n; i++)
for(int j = now + 1; j <= n; j++)
vis[sg[i] ^ sg[j]] = false;
return sg[now];
}
bool judge() {
int ans = 0;
for(int i = 1; i <= n; i++) ans ^= (t[i] & 1? work(i) : 0);
return ans;
}
int main() {
for(int T = in(); T --> 0;) {
n = in();
for(int i = 1; i <= n; i++) sg[i] = 0, have[i] = 0, t[i] = in();
if(!judge()) printf("-1 -1 -1\n0\n");
else {
int tot = 0, flag = false;
for(int i = 1; i <= n; i++) {
if(!t[i]) continue;
for(int j = i + 1; j <= n; j++) {
for(int k = j; k <= n; k++) {
t[i]--, t[j]++, t[k]++;
if(!judge()) {
tot++;
if(!flag) flag = true, printf("%d %d %d\n", i - 1, j - 1, k - 1);
}
t[i]++, t[j]--, t[k]--;
}
}
}
printf("%d\n", tot);
}
}
return 0;
}
P3185 [HNOI2007]分裂游戏的更多相关文章
- BZOJ 1188 / Luogu P3185 [HNOI2007]分裂游戏 (SG函数)
题意 有n个格子,标号为0 ~ n-1,每个格子上有若干石子,每次操作可以选一个0 ~ n-2的格子上的一颗石子,分裂为两颗,然后任意放在后面的两个格子内,这两个格子可以相同.求使先手必胜的第一步的方 ...
- bzoj1188 [HNOI2007]分裂游戏 博弈论 sg函数的应用
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 973 Solved: 599[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏(SG函数,博弈)
1188: [HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 733 Solved: 451[Submit][Status ...
- bzoj 1188 [HNOI2007]分裂游戏 SG函数 SG定理
[HNOI2007]分裂游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1394 Solved: 847[Submit][Status][Dis ...
- [bzoj1188][HNOI2007]分裂游戏_博弈论
分裂游戏 bzoj-1188 HNOI-2007 题目大意:题目链接. 注释:略. 想法: 我们发现如果一个瓶子内的小球个数是奇数才是有效的. 所以我们就可以将问题变成了一个瓶子里最多只有一个球球. ...
- 题解 洛谷 P3185 【[HNOI2007]分裂游戏】
首先可以发现,当所有巧克力豆在最后一个瓶子中时,就无法再操作了,此时为必败状态. 注意到,对于每个瓶子里的巧克力豆,是可以在模\(2\)的意义下去考虑的,因为后手可以模仿先手的操作,所以就将巧克力豆个 ...
- 【BZOJ 1188】 [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- bzoj1188: [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
- [HNOI2007]分裂游戏
Description 聪聪和睿睿最近迷上了一款叫做分裂的游戏. 该游戏的规则试: 共有 n 个瓶子, 标号为 0,1,2.....n-1, 第 i 个瓶子中装有 p[i]颗巧克力豆,两个人轮流取豆子 ...
随机推荐
- java多线程编程核心技术-笔记
一.第一章 1.自定义线程类中实例变量针对其他线程有共享和不共享之分,自定义线程中的变量,如果是继承自thread类,则每个线程中的示例变量的更改,不影响其他线程2.当多个线程去访问一个局部变量是会产 ...
- Hadoop IO基于文件的数据结构详解【列式和行式数据结构的存储策略】
Charles所有关于hadoop的文章参考自hadoop权威指南第四版预览版 大家可以去safari免费阅读其英文预览版.本人也上传了PDF版本在我的资源中可以免费下载,不需要C币,点击这里下载. ...
- 进程间通信___命名管道(FIFO)
命名管道(FIFO) 基本概念 命名管道和一般的管道基本相同,但也有一些显著的不同: 命名管道是在文件系统中作为一个特殊的设备文件而存在的. 不同祖先的进程之间可以通过管道共享数据. 当共享管道的进程 ...
- Java虚拟机(二):垃圾回收算法
一.介绍 GC(Garbage Collection),垃圾收集 Java中,GC的对象是堆空间和永久区 二.GC算法 1. 引用计数法 老牌垃圾回收算法 通过引用计算来回收垃圾 Java中未使用,使 ...
- Animation Parameter
[Animation Parameter] Animation Parameters are variables that are defined within the animation syste ...
- VMware设置及linux静态ip设置
1. VMWARE虚拟机NAT模式上网设置 1.1. VM虚拟机设置 1.1.1. 虚拟机全局设置 启动虚拟机选择[虚拟网络编辑器] 如果需要管理员权限点[更改设置],没有提示这忽略这一步 选 ...
- 【总结整理】KANO 模型
c 基本(必备)型需求——Must-beQuality/ Basic Quality. 期望(意愿)型需求——One-dimensional Quality/ Performance Quality. ...
- mongo 修改器 $inc/$set/$unset/$pop/$push/$pull/$addToSet
mongo $inc 可以对集合里面的某些值是数字的增减.看代码 $set 可以进行修改,并且不存在的时候默认添加. 同时还能该变数据的类型. 还可以该变内嵌元素的值 用.调用 $unset 删除 ...
- linux信号基本概念及如何产生信号
linux信号基本概念及如何产生信号 摘自:https://blog.csdn.net/summy_j/article/details/73199069 2017年06月14日 09:34:21 阅读 ...
- 第一次C语言作业:博客随笔
1)你觉得大学和高中有什么差别?具体学习上哪? 大学自主学习较多,锻炼自己独立的品质.在学习上,增加了课程的深度和难度,由更多的活动. 2)我希望大学的师生关系是?阅读上述博客后对师生关系有何感想? ...