题目描述

有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小。

输入输出格式

输入格式:

第一行为3个整数,分别表示a,b,n的值

第二行至第a+1行每行为b个非负整数,表示矩阵中相应位置上的数。每行相邻两数之间用一空格分隔。

输出格式:

仅一个整数,为a*b矩阵中所有“n*n正方形区域中的最大整数和最小整数的差值”的最小值。

输入输出样例

输入样例#1:
复制

5 4 2
1 2 5 6
0 17 16 0
16 17 2 1
2 10 2 1
1 2 2 2
输出样例#1: 复制

1

说明

问题规模

(1)矩阵中的所有数都不超过1,000,000,000

(2)20%的数据2<=a,b<=100,n<=a,n<=b,n<=10

(3)100%的数据2<=a,b<=1000,n<=a,n<=b,n<=100

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<time.h>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 700005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
#define mclr(x,a) memset((x),a,sizeof(x))
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9 + 7;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/
int a, b, n;
int Log;
int maxx[1103][1103];
int minn[1103][1103];
int mx[1101][1101]; int query(int x, int y) {
int Max = -inf, Min = inf;
Max = max(maxx[x][y], max(maxx[x + n - (1 << Log)][y + n - (1 << Log)], max(maxx[x + n - (1 << Log)][y], maxx[x][y + n - (1 << Log)])));
Min = min(minn[x][y], min(minn[x + n - (1 << Log)][y + n - (1 << Log)], min(minn[x + n - (1 << Log)][y], minn[x][y + n - (1 << Log)])));
return Max - Min;
} int main()
{
// ios::sync_with_stdio(0);
a = rd(); b = rd(); n = rd();
for (int i = 1; i <= a; i++) {
for (int j = 1; j <= b; j++) {
mx[i][j] = rd();
maxx[i][j] = minn[i][j] = mx[i][j];
}
}
for (Log = 0; (1 << (Log + 1) <= n); Log++);
for (int k = 0; k < Log; k++) {
for (int i = 1; i + (1 << k) <= a; i++) {
for (int j = 1; j + (1 << k) <= b; j++) {
maxx[i][j] = max(maxx[i][j], max(maxx[i + (1 << (k))][j + (1 << (k))], max(maxx[i][j + (1 << k)], maxx[i + (1 << k)][j])));
minn[i][j] = min(minn[i][j], min(minn[i + (1 << k)][j + (1 << k)], min(minn[i + (1 << k)][j], minn[i][j + (1 << k)])));
}
}
}
ll ans = 9999999999;
for (int i = 1; i <= a - n + 1; i++) {
for (int j = 1; j <= b - n + 1; j++) {
ans = min(ans, 1ll * query(i, j));
}
}
printf("%d\n", ans);
return 0;
}

[HAOI2007]理想的正方形 BZOJ1047 二维RMQ的更多相关文章

  1. 【洛谷2216】[HAOI2007] 理想的正方形(二维RMQ)

    点此看题面 大致题意: 求出一个矩阵中所有\(n*n\)正方形中极差的最小值. 另一种做法 听说这题可以用单调队列去做,但是我写了一个二维\(RMQ\). 二维\(RMQ\) \(RMQ\)相信大家都 ...

  2. P2216 [HAOI2007]理想的正方形(二维RMQ)

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: 第一行为3个整数,分别表示a,b,n的值 第二行至 ...

  3. 【洛谷 P2216】 [HAOI2007]理想的正方形(二维ST表)

    题目链接 做出二维\(ST\)表,然后\(O(n^2)\)扫一遍就好了. #include <cstdio> #include <cstring> #include <a ...

  4. [luoguP2216] [HAOI2007]理想的正方形(二维单调队列)

    传送门 1.先弄个单调队列求出每一行的区间为n的最大值最小值. 2.然后再搞个单调队列求1所求出的结果的区间为n的最大值最小值 3.最后扫一遍就行 懒得画图,自己体会吧. ——代码 #include ...

  5. 【bzoj1047】[HAOI2007]理想的正方形 二维RMQ

    题目描述 有一个a*b的整数组成的矩阵,现请你从中找出一个n*n的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入 第一行为3个整数,分别表示a,b,n的值第二行至第a+1行每行为b个非 ...

  6. 理想的正方形 HAOI2007(二维RMQ)

    理想的正方形 省队选拔赛河南  时间限制: 1 s  空间限制: 256000 KB  题目等级 : 大师 Master       题目描述 Description 有一个a*b的整数组成的矩阵,现 ...

  7. 【BZOJ1047】[HAOI2007]理想的正方形

    [BZOJ1047][HAOI2007]理想的正方形 题面 bzoj 洛谷 题解 二维\(st\)表,代码是以前的 #include<iostream> #include<cstdi ...

  8. 【BZOJ1047】[HAOI2007]理想的正方形 (倍增ST表)

    [HAOI2007]理想的正方形 题目描述 有一个\(a*b\)的整数组成的矩阵,现请你从中找出一个\(n*n\)的正方形区域,使得该区域所有数中的最大值和最小值的差最小. 输入输出格式 输入格式: ...

  9. 【BZOJ1047】[HAOI2007]理想的正方形(单调队列,动态规划)

    [BZOJ1047][HAOI2007]理想的正方形(单调队列,动态规划) 题面 BZOJ 洛谷 题解 直接一个单调队列维护一下没给点和它前面的\(n\)个位置的最大值,再用一次单调队列维护连续\(n ...

随机推荐

  1. eth0&nbsp;no&nbsp;such&nbsp;device(reload)

    转载自:http://blog.chinaunix.net/uid-25554408-id-292638.html 今天我在vmware里安装了虚拟机,安装虚拟机就想安装vmware tools(这个 ...

  2. Spark,一种快速数据分析替代方案

    原文出处:http://www.ibm.com/developerworks/library/os-spark/ Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同 ...

  3. 查看window下默认ORACLE_SID

    Configuration and Migration Tools-----Configuration and Migration Tools-----Administration Assistant ...

  4. jar包上传到jcenter

    H:\[BOOT]\gradle-5.0-bin\gradle-5.0\gradle.properties # in $HOME/.gradle/gradle.properties java6Home ...

  5. 百度Ueditor编辑器取消多图上传对话框中的图片搜索

    百度Ueditor确实是一个非常强悍的编辑器,功能强大!但是实际开发需求复杂,总会有各种不符合要求的,比如想要取消多图上传的“图片搜索”选项卡(这个图片搜索真心难用)! 以ueditor 1.4.3为 ...

  6. 7. Reverse Integer 反转整数

    [抄题]: 将一个整数中的数字进行颠倒,当颠倒后的整数溢出时,返回 0 (标记为 32 位整数).   样例 给定 x = 123,返回 321 给定 x = -123,返回 -321 [暴力解法]: ...

  7. Ubuntu下配置Apache的Worker模式

    其实Apache本身的并发能力是足够强大的,但是Ubuntu默认安装的是Prefork模式下的Apache.所以导致很多人后面盲目的去 安装lighttpd或者nginx一类替代软件.但是这类软件有一 ...

  8. Apache apxs命令

    一.简介 apxs是一个为Apache HTTP服务器编译和安装扩展模块的工具,用于编译一个或多个源程序或目标代码文件为动态共享对象,使之可以用由mod_so提供的LoadModule指令在运行时加载 ...

  9. Makefile 调试

    一.简介 GNU make 提供了若干可以协助调试的内置函数以及命令行选项. 用来调试makefile 的一个最好方法就是加入调试挂钩以及使用具保护的编程技术,让你能够在事情出错时恢复原状. 二.ma ...

  10. Luogu 4159 [SCOI2009]迷路

    BZOJ 1297 应当是简单题. 发现边权的数量很小,所以我们暴力把一个点拆成$9$个点,然后把$(x, i)$到$(x, i + 1)$连边,代表转移一次之后可以走回来:对于每一条存在的边$(i, ...