DFS(8)——poj2034Anti-prime Sequences
一、题目回顾
题目链接:Anti-prime Sequences
1,3,5,4,2,6,9,7,8,10
1,3,5,4,6,2,10,8,7,9
No anti-prime sequence exists.
40,41,43,42,44,46,45,47,48,50,55,53,52,60,56,49,51,59,58,57,54
题意:求n到m的一个排列,满足任意连续的k(2<=k<=d)个数的和都不为素数。
二、解题思路
- dfs+素数打表
三、代码
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int maxn = 10001;
int ans[1001];
int n,m,d,flag;
int prime[maxn];
bool vis[1001]; void isPrime()
{
/* memset(prime,1,sizeof(prime));
prime[1] = 0;
for (int i=2;i<=10000;i++)
if (prime[i])
for (int j=i+i;j<=10000;j+=i)
prime[j] = 0;*/
for(int i=2;i<maxn;i++)
for(int j=2;i*j<maxn;j++)
prime[i*j]=1;
} void dfs(int now)
{
if(flag) return;
if(now>m-n+1){
flag = 1;
return;
}
for(int i=n;i<=m;i++){
int biaoji = 0;
if(!vis[i]){
for(int j=2;j<=d&&now-j>=0;j++){
if(!prime[ans[now-1]+i-ans[now-j]])
biaoji = 1;
}
if(biaoji) continue;
ans[now] = ans[now-1] + i;
vis[i] = 1;
dfs(now+1);
if(flag) return;
vis[i] = 0;
}
}
} int main()
{
isPrime();
while(cin>>n>>m>>d && !(n==0&&m==0&&d==0)){
memset(vis,0,sizeof(vis));
flag = 0;
dfs(1);
if(flag==0) printf("No anti-prime sequence exists.\n");
else{
printf("%d",ans[1]);
for(int i=2;i<=m-n+1;i++)
printf(",%d",ans[i]-ans[i-1]);
printf("\n");
}
}
return 0;
}
DFS(8)——poj2034Anti-prime Sequences的更多相关文章
- DFS(深度优先)算法编程实践
DFS定义 DFS(Depth-First-Search)深度优先搜索算法,是搜索算法的一种.是一种在开发爬虫早期使用较多的方法.它的目的是要达到被搜索结构的叶结点 . 特点 每次深度优先搜索的结果必 ...
- 拓扑排序+DFS(POJ1270)
[日后练手](非解题) 拓扑排序+DFS(POJ1270) #include<stdio.h> #include<iostream> #include<cstdio> ...
- DFS(一):深度优先搜索的基本思想
采用搜索算法解决问题时,需要构造一个表明状态特征和不同状态之间关系的数据结构,这种数据结构称为结点.不同的问题需要用不同的数据结构描述. 根据搜索问题所给定的条件,从一个结点出发,可以生成一个或多个新 ...
- 深度优先搜索DFS(一)
实例一 0/1背包问题: 有n件物品,每件物品的重量为w[i],价值为c[i].现在需要选出若干件物品放入一个容量为V的背包中,使得在选入背包的物品重量和不超过容量V的前提下,让背包中的物品 ...
- 万能的搜索--之DFS(二)
(一)深度优先搜索(DFS) 我们先给出深度优先的解决办法,所谓深度优先搜索,在迷宫问题里就是不撞南墙不回头,能走得深一点就尽量深一点.如果碰到了墙壁就返回前一个位置尝试其他的方向.在<啊哈!算 ...
- DFS(二):骑士游历问题
在国际象棋的棋盘(8行×8列)上放置一个马,按照“马走日字”的规则,马要遍历棋盘,即到达棋盘上的每一格,并且每格只到达一次.例如,下图给出了骑士从坐标(1,5)出发,游历棋盘的一种可能情况. [例1] ...
- DFS(四):剪枝策略
顾名思义,剪枝就是通过一些判断,剪掉搜索树上不必要的子树.在采用DFS算法搜索时,有时候我们会发现某个结点对应的子树的状态都不是我们要的结果,这时候我们没必要对这个分支进行搜索,砍掉这个子树,就是剪枝 ...
- DFS(三):八皇后问题
[例1]八皇后问题. 在一个8×8国际象棋盘上,放置8个皇后,每个皇后占一格,要求皇后间不会出现相互“攻击”的现象,即不能有两个皇后处在同一行.同一列或同一对角线上.问共有多少种不同的放置方法? (1 ...
- Chapter1(预科)--C++Prime笔记
心得体会: 因为之前一直在用在学C,因此在看完C++Prime第一章后,就有中在一个培训班中,一个老师用一个简单的项目来带你了解这种语言的特性的感觉.当然这个告诉是在让你脑子固化接受一些点的前提下. ...
随机推荐
- Openresty最佳案例 | 第3篇:Openresty的安装
转载请标明出处: http://blog.csdn.net/forezp/article/details/78616645 本文出自方志朋的博客 我的服务器为一台全新的centos 7的服务器,所以从 ...
- Xcode 9.0 报错, Safe Area Layout Guide Before IOS 9.0
Xcode 9.0 新建工程报错 xcode Safe Area Layout Guide Before IOS 9.0 如下图,在Builds for 选择iOS9.0 and Later,不勾选U ...
- JS继续学习记录(一)
JS继续学习记录(一) 总感觉自己的js code写的还算可以,但是又深知好像只知道一些皮毛,所以打算仔细记录一下js晋级学习过程,日日往复 先记录一下自己目前对js的了解吧(20180828) js ...
- Angularjs基础(十二)
ng-model-options 描述:规定如何更新模型 实例: 在失去焦点时绑定输入框的值scope 变量中. <div ng-app="myApp" ng-control ...
- 使用mysql5.7版本数据库需要注意的地方/持续更新
数据库mysql 5.7版本的初始密码修改 安装完后实在是找不到初始密码的文件,后面发现再错误日志中 先关闭mysql pkill mysqld 安全模式启动数据库并修改密码 mysqld_safe ...
- python三大神器之生成器
生成器Generator: 本质:迭代器(所以自带了__iter__方法和__next__方法,不需要我们去实现) 特点:惰性运算,开发者自定义 在python中有三种方法来获取生成器: 1.通过生成 ...
- R语言学习笔记(五):零碎知识点(11-15)
11--which.min(), which.max()和which() which(x, arr.ind = FALSE, useNames = TRUE) x 是一个向量或者数组,可以是NA,但会 ...
- 隐式Dijkstra:在状态集合中用优先队列求前k小
这种技巧是挺久以前接触的了,最近又突然遇到几道新题,于是总结了一下体会. 这种算法适用的前提是,标题所述的"状态集合"大到不可枚举(否则枚举就行了qaq) ...
- kafka重置offset
kafka重置offset 1.删除zookeeper上节点信息 打开client :./zkCli.sh -server 127.0.0.1:12181 删除consumer:rmr /cons ...
- Spring事务:一种编程式事务,三种声明式事务
事务隔离级别 隔离级别是指若干个并发的事务之间的隔离程度.TransactionDefinition 接口中定义了五个表示隔离级别的常量: TransactionDefinition.ISOLATIO ...