HDU1950-Bridging signals-最长上升子序列
Description
each other all over the place. At this late stage of the process, it is too
expensive to redo the routing. Instead, the engineers have to bridge the signals, using the third dimension, so that no two signals cross. However, bridging is a complicated operation, and thus it is desirable to bridge as few signals as possible. The call
for a computer program that finds the maximum number of signals which may be connected on the silicon surface without rossing each other, is imminent. Bearing in mind that there may be housands of signal ports at the boundary of a functional block, the problem
asks quite a lot of the programmer. Are you up to the task?
Figure 1. To the left: The two blocks' ports and their signal mapping (4,2,6,3,1,5). To the right: At most three signals may be routed on the silicon surface without crossing each other. The dashed signals must be bridged.
A typical situation is schematically depicted in figure 1. The ports of the two functional blocks are numbered from 1 to p, from top to bottom. The signal mapping is described by a permutation of the numbers 1 to p in the form of a list of p unique numbers
in the range 1 to p, in which the i:th number pecifies which port on the right side should be connected to the i:th port on the left side.
Two signals cross if and only if the straight lines connecting the two ports of each pair do.
Input
functional blocks. Then follow p lines, describing the signal mapping: On the i:th line is the port number of the block on the right side which should be connected to the i:th port of the block on the left side.
Output
Sample Input
4
64 2 6 3 1 5
102 3 4 5 6 7 8 9 10 1
88 7 6 5 4 3 2 1
95 8 9 2 3 1 7 4 6
Sample Output
3
9
1
4
题目本质::求最长上升子序列(这里没有反复数字)。
我们有两种思路求能够參考shuoj上的D序列的题目。这里给出题目的题解链接::shuojD序列
主要是两种思路::(1)lower_bound(2)二分法,假设认为代码不易理解能够点上面的链接
将数组A中子序列长度为 i 的最小值存放在数组S中。我们以3 2 4 6 5 7 3 为例进行演示行为遍历,列为数组S。变化的地方已经标出来,有助于理解。
在这里a[ i ] > s[ j ]&&a[i]<=s[ j + 1 ]就应该把a[ i ]放在s[ j+1 ]的位置。
所以关键就是找出 j 就知道把a[ i ]放在哪了。
上面的两种方法就是用来寻找 j的
。
(在这里lower_bound直接返回 j + 1 )
0 | 1 | 2 | 3 | 4 |
1 | 3 | |||
2 | 2 | |||
3 | 2 | 4 | ||
4 | 2 | 4 | 6 | |
5 | 2 | 4 | 5 | |
6 | 2 | 4 | 5 | 7 |
7 | 2 | 3 | 5 | 7 |
这里给出另外一种方法代码::
#include <iostream>
#include<cstring>
#include <algorithm>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 1e5 + 5;
int s[N];
int n,p,a[N];
int len;
int main()
{
cin>>n;
while(n--){
cin>>p;
memset(s,0,sizeof(s));
for(int i = 0;i<p;i++)cin>>a[i];
s[1] = a[0];len = 1;//长度从1開始
for(int i = 1;i<p;i++){ int t = a[i];
if(t>s[len])s[++len] = a[i];
else{
/*************/int l = 1,r = len,mid;//这里的二分法採用了左闭右闭的思路
<span style="white-space:pre"> </span>int ans = 0;
while(l<=r)
{
mid = (l+r)/2;
if(s[mid]<t)
{l = mid +1;ans = max(ans,mid);}//ans即为思路中的j,j必定为s数组中小于t的最大的数
else r = mid-1;
}
s[ans+1] = t;/******************/
}
}
//for(int i = 1;i<p;i++){cout<<s[i];}//有必要能够打开看看s中存的是什么值
cout<<len<<endl;
}
return 0;
}
假设代码不易理解请点击链接,链接为::shuoj—D序列
第一种的代码仅仅要将两个/**************/之间的代码换为
int p = lower_bound(s+1,s+len+1,t)-s;
s[p] = t;
就能够了。
HDU1950-Bridging signals-最长上升子序列的更多相关文章
- hdu----(1950)Bridging signals(最长递增子序列 (LIS) )
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- hdu1950 Bridging signals 最长递增子序列
用一个数组记下递增子序列长度为i时最小的len[i],不断更新len数组,最大的i即为最长递增子序列的长度 #include<cstdio> #include<algorithm&g ...
- POJ3903Stock Exchange&&POJ1631Bridging signals最长上升子序列 &&POJ1887Testing the CATCHER(最长下降子序列)(LIS模版题)
题目链接:http://poj.org/problem?id=3903 题目链接:http://poj.org/problem?id=1631 题目链接:http://poj.org/problem? ...
- hdu1950 Bridging signals
LIS nlogn的时间复杂度,之前没有写过. 思路是d[i]保存长度为i的单调不下降子序列末尾的最小值. 更新时候,如果a[i]>d[len],(len为目前最长的单调不下降子序列) d[++ ...
- dp之最长上升子序列
普通做法是O(n^2)下面介绍:最长上升子序列O(nlogn)算法(http://blog.csdn.net/shuangde800/article/details/7474903) /* HDU 1 ...
- 最长上升子序列(LIS)长度的O(nlogn)算法
最长上升子序列(LIS)的典型变形,熟悉的n^2的动归会超时.LIS问题可以优化为nlogn的算法.定义d[k]:长度为k的上升子序列的最末元素,若有多个长度为k的上升子序列,则记录最小的那个最末元素 ...
- Bridging signals(NlogN最长上升子序列)
Bridging signals Time Limit: 5000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) ...
- poj 1631 Bridging signals (二分||DP||最长递增子序列)
Bridging signals Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 9234 Accepted: 5037 ...
- (hdu)1950 Bridging signals(最长上升子序列)
Problem Description 'Oh no, they've done it again', cries the chief designer at the Waferland chip f ...
- POJ 1631 Bridging signals DP(最长上升子序列)
最近一直在做<挑战程序设计竞赛>的练习题,感觉好多经典的题,都值得记录. 题意:给你t组数据,每组数组有n个数字,求每组的最长上升子序列的长度. 思路:由于n最大为40000,所以n*n的 ...
随机推荐
- 纪念我人生中第一个merge into语句
做按组织关系汇总功能时,当数据量特别大,或者汇总组织特别多时,运行效率特别低,于是使用了merge into语句. 代码如下: public void updateInsertData(DataSet ...
- HTML5事件-自定义右键菜单
WEB领域中,为实现上下文菜单,开发人员面临的主要问题是如何确定应该显示这个上下文菜单(Windows 中,右键单击:Mac 中,Ctrl+单击), 以及如何屏蔽与该操作相关联的默认上下文菜单. 解决 ...
- 初学spring(一)
1.spring 在ssh 中所处的位置 struts 是web框架(jsp,action,actionform) hibernate 是orm框架,处于数据持久层 spring 是容器框架,配置be ...
- Pycharm快捷键小结
1.编辑(Editing) Ctrl + Space 基本的代码完成(类.方法.属性)Ctrl + Alt + Space 快速导入任意类Ctrl + Shift + Enter 语句完成Ctrl + ...
- 转载-android studio 各种问题
android studio 各种问题 1.dexDebug ExecException finished with non-zero exit value 2 全bug日志如下: (Error:Ex ...
- 第八章 springboot + mybatis + 多数据源3(使用切面AOP)
引入 aop包 <dependency> <groupId>org.springframework.boot</groupId> <artifactId> ...
- 配置LANMP环境(3)-- 安装anmp前准备与实用软件安装
一.安装配置vim 1.安装 yum -y install vim* 2.创建文件夹 mkdir -p /etc/vim/ 3.配置 vim ~/.vimrc "插入模式时 光标的上下左右 ...
- @Cache(usage = CacheConcurrencyStrategy.READ_WRITE)什么意思??
从hibernate2.1开始ehcache已经作为hibernate的默认缓存方案(二级缓存方案 sessionfactory级别), 在项目中有针对性的使用缓存将对性能的提升右很大的帮助. 要使用 ...
- ASP.NET动态网站制作(24)-- ADO.NET(3)
前言:ADO.NET的第三节课.今天主要讲SQL Helper. 内容: 1.DataReader和DataSet的区别: (1)DataReader是一行一行地读,且只能向前读:DataSet是一次 ...
- unity 多选枚举
首先是自定义 using UnityEngine; using System.Collections; using UnityEditor; public class EnumFlagsAttribu ...