好玩的推式子

题目描述

曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改——一种可以发射威力更加强大的粒子流的神秘装置。

超能粒子炮・改相比超能粒子炮,在威力上有了本质的提升。它有两个参数 \(n\)、\(k\),它会向每个编号为 \(0\) 到 \(k\)(包含两端)的位置 \(i\) 发射威力为 \(\mathrm{C}_n^i \bmod 2333\) 的粒子流。

现在 SHTSC 给出了他的超能粒子炮・改的参数,让你求出其发射的粒子流的威力之和除以 \(2333\) 所得的余数。

输入格式:

第一行一个整数 \(t\) 表示数据组数。

之后 \(t\) 行,每行两个整数 \(n\)、\(k\),含义如题面描述。

输出格式:

\(t\) 行,每行一个整数,表示其粒子流的威力之和模 \(2333\) 的值。

输入输出样例

输入样例:

3
5 5
10 7
1145 14

输出样例:

32
968
763

数据范围与约定

对于 \(10\%\) 的数据,\(t=1\),\(n,k\le 1000\);

对于 \(30\%\) 的数据,\(t=1\),\(n,k\leq 1000000\);

对于 \(50\%\) 的数据,\(t=1\),\(n\le 10^{18},k\le 1000\);

对于 \(70\%\) 的数据,\(t\le 100\),\(n,k\le 10^{18}\);

对于 \(100\%\) 的数据,\(t\le 100000\),\(n,k\le 10^{18}\)。

题解:

注:本文中所有的除法 \(/\) 都向下取整,所有的百分号 \(\%\) 都表示取模。

这个题求的是 \(\sum_{i=0}^k\mathrm{C}_n^i\bmod 2333\)。但是模数是 \(2333\) 因此可以考虑 Lucas 定理,即 \(\mathrm{C}_n^m\% p=\mathrm{C}_{n\% p}^{m\% p}\mathrm{C}_{n/p}^{m/p}\)。

我们把上面的和式推导一下,则为

\[\sum_{i=0}^k\mathrm{C}_{n/2333}^{i/2333}\mathrm{C}_{n\%2333}^{i\%2333}
\]

然后我们发现,整个过程中 \(n/2333\) 和 \(n\% 2333\) 是不变的。只需要关注 \(i/2333\) 和 \(i\%2333\) 的变化规律。

而对于连续的 \(i\in[2333k,2333k+2333)\) 它们的 \(i/2333\) 是相同的,\(i\%2333\in[0,2333)\),所以我们把需要求和的 \(k\) 个数分成 \(\left\lceil\frac{k}{2333}\right\rceil\) 段。其中前 \(\left\lfloor\frac{k}{2333}\right\rfloor\) 段一定是完整的,因此可以表示为

\[\sum_{t=0}^{\left\lfloor\frac{k}{2333}\right\rfloor}\mathrm{C}_{n/2333}^t\sum_{i=0}^{2332}\mathrm{C}_{n\%2333}^i+\sum_{i=k-k\%2333}^k\mathrm{C}_{n/2333}^{i/2333}\mathrm{C}_{n\%2333}^{i\%2333}
\]

对于加号后面的式子,\(i/2333=0\),所以是对后面一个式子求和,因此可以用杨辉三角预处理,并求出前缀和,\(O(1)\) 解决。

对于中间一个式子 \(\sum_{i=0}^{2332}\mathrm{C}_{n\%2333}^i\) ,因为 \(n\%2333<2333\) ,同理用杨辉三角。

\[\sum_{i=0}^{2332}\mathrm{C}_{n\%2333}^i=S,\\\ \sum_{i=k-k\%2333}^k\mathrm{C}_{n/2333}^{i/2333}\mathrm{C}_{n\%2333}^{i\%2333}=A
\]

则原式为

\[S\sum_{t=0}^{\left\lfloor\frac{k}{2333}\right\rfloor}\mathrm{C}_{n/2333}^t+A
\]

对于剩下的一个式子,又转化为了一个求和的子问题,因此我们递归解决。递归的边界是 \(k<2333\)。

因此可以在 \(2333^2+O(t\log k)\) 的时间复杂度内解决这个问题。

Code:

#include<cstdio>
#define ll long long
ll C[2333][2333];
ll calc(ll n,ll t)//0~t的C_n^t
{
ll ans=0,p=n%2333;
if(t/2333)
ans=C[p][p]*calc(n/2333,t/2333-1)%2333;
else
return C[p][t%2333];
ll a=n/2333,b=t/2333,tmp=1;
while(a>=2333||b>=2333)
{
if(b%2333)
tmp=tmp*(C[a%2333][b%2333]-C[a%2333][b%2333-1]+2333)%2333;
a/=2333,b/=2333;
}
if(b)
tmp=tmp*(C[a][b]-C[a][b-1]+2333)%2333;
ans=(ans+C[p][t%2333]*tmp)%2333;
return ans;
}
int main()
{
C[0][0]=1;
for(int i=1;i<=2332;++i)
{
C[i][0]=1;
for(int j=1;j<=i;++j)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%2333;
}
for(int i=0;i<=2332;++i)
for(int j=1;j<=2332;++j)
C[i][j]=(C[i][j-1]+C[i][j])%2333;
int T;
ll n,k;
scanf("%d",&T);
while(T--)
{
scanf("%lld%lld",&n,&k);
printf("%lld\n",calc(n,k));
}
return 0;
}

loj 2038 / 洛谷 P4345 [SHOI2015] 超能粒子炮・改 题解的更多相关文章

  1. 洛谷 P4345 [SHOI2015]超能粒子炮·改 解题报告

    P4345 [SHOI2015]超能粒子炮·改 题意 求\(\sum_{i=0}^k\binom{n}{i}\),\(T\)组数据 范围 \(T\le 10^5,n,j\le 10^{18}\) 设\ ...

  2. [洛谷P4345][SHOI2015]超能粒子炮·改

    题目大意:给你$n,k$,求:$$\sum\limits_{i=0}^k\binom n i\pmod{2333}$$题解:令$p=2333,f(n,k)\equiv\sum\limits_{i=0} ...

  3. bzoj4591 / P4345 [SHOI2015]超能粒子炮·改

    P4345 [SHOI2015]超能粒子炮·改 题意:求$\sum_{i=1}^{k}C(n,i)\%(P=2333)$ 肯定要先拆开,不然怎么做呢(大雾) 把$C(n,i)$用$lucas$分解一下 ...

  4. P4345 [SHOI2015]超能粒子炮·改 Lucas

    \(\color{#0066ff}{ 题目描述 }\) 曾经发明了脑洞治疗仪与超能粒子炮的发明家 SHTSC 又公开了他的新发明:超能粒子炮・改--一种可以发射威力更加强大的粒子流的神秘装置. 超能粒 ...

  5. P4345 [SHOI2015]超能粒子炮·改

    传送门 看到数据和模数大小就知道要上 lucas 了 然后开始愉快地推公式: 答案为 $\sum _{i=0}^kC_{n}^{i}\ (mod\ 2333)$ 设 $f [ i ] [ j ] = ...

  6. 【BZOJ4591】[SHOI2015]超能粒子炮·改 (卢卡斯定理)

    [BZOJ4591][SHOI2015]超能粒子炮·改 (卢卡斯定理) 题面 BZOJ 洛谷 题解 感天动地!终于不是拓展卢卡斯了!我看到了一个模数,它是质数!!! 看着这个东西就感觉可以递归处理. ...

  7. Bzoj 4591: [Shoi2015]超能粒子炮·改 数论,Lucas定理,排列组合

    4591: [Shoi2015]超能粒子炮·改 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 178  Solved: 70[Submit][Stat ...

  8. bzoj 4591: [Shoi2015]超能粒子炮·改 [lucas定理]

    4591: [Shoi2015]超能粒子炮·改 题意:多组询问,求 \[ S(n, k) = \sum_{i=0}^n \binom{n}{i} \mod 2333,\ k \le n \le 10^ ...

  9. BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理

    BZOJ_4591_[Shoi2015]超能粒子炮·改_Lucas定理 Description 曾经发明了脑洞治疗仪&超能粒子炮的发明家SHTSC又公开了他的新发明:超能粒子炮·改--一种可以 ...

随机推荐

  1. c语言实践 统计输入的一串正整数里面奇数和偶数的个数

    怎么考虑这个问题. 首先先确定肯定是需要一个变量保存输入的数据的,我们叫它input,最后结果要的是个数,所以需要另外两个变量来保存奇数的个数和偶数的个数. int input int countJ ...

  2. 嵌入式Qt开发环境的搭建详解

    一.嵌入式Qt开发环境的搭建前奏 1.下载arm-linux-gcc-4.4.3-20100728.tar.gz 2.下载qt-everywhere-opensource-src-4.8.5.tar. ...

  3. Android不间断上报位置信息-应用进程防杀指南

    没用的 除非加入白名单 或者用户自己设置锁屏后不被杀死 不然的话 锁屏5分钟以内app会被杀死,包 括所有的service. 说白了就是定位不要纯依赖gps,很多硬件为了省电,会对熄屏下的模块功能和运 ...

  4. [GO]二维数组的介绍

    package main import "fmt" func main() { ][]int // 有几个方括号就是几维数据 // 有几个方括号就需要几重循环 k := ; i&l ...

  5. (转)C# HTML解析示例---星星引发的血案

    原文地址:http://www.cnblogs.com/wurang/archive/2013/06/14/3119023.html [前言] 从CSDN转投cnBlog也有一段时间了,发现cnBlo ...

  6. LibreOJ 6002 最小路径覆盖(最大流)

    题解:最小路径覆盖=总点数减去最大匹配数,拆点,按照每条边前一个点连源点,后一个点连汇点跑最大流,即可跑出最大匹配数,然后减一减就可以了~ 代码如下: #include<queue> #i ...

  7. JAVA读取控制台的输入【转】

    前面介绍了使用IO类实现文件读写的示例,其实在很多地方还需要使用到IO类,这里再以读取控制台输入为例子来介绍IO类的使用. 控制台(Console)指无图形界面的程序,运行时显示或输入数据的位置,前面 ...

  8. WPF 控件库——仿制Chrome的ColorPicker

    WPF 控件库系列博文地址: WPF 控件库——仿制Chrome的ColorPicker WPF 控件库——仿制Windows10的进度条 WPF 控件库——轮播控件 WPF 控件库——带有惯性的Sc ...

  9. 删除当前文件夹的bat工具

    @echo off:11set /p path=Please enter delete filepath:del /f /s /q %path%rd /q /s %path%goto 11pause

  10. OC语言自定义打印

    1.为了全文通用,选择在PCH文件中写: // // 版权所有:Copyright © 2018年 Lelight. All rights reserved. // 创 建 者: Lelight // ...