DP设状态 : 状压与线
[NOIP2017]宝藏(状压)
[AHOI2009]中国象棋(状压)
[BZOJ1814] URAL1519 Formula 1(插头\(DP\)模板)
新链接 : Luogu5056 , darkbzoj1814
代码借鉴 : Icefox
[BZOJ1187] HNOI2007 神奇游乐园(插头\(DP\))
Luogu3190
由找方案数变成了找最大值
[HDU1693] Eat the Trees(插头\(DP\))
Luogu5074
求闭合方案数
设 \(f[i][j][k]\) 表示做完第 \(i\) 行 , 第 \(j\) 列 , 目前那 \(m+1\) 个插头的选取二进制状态为 \(k\) 的方案数 .
初始值 : \(f[0][m][0]=1\)
每行继承值 : \(f[i][0][k<<1]=f[i−1][m][k] , k∈ [0,2m)\)
因为上一行最后一个位置不能有未闭合的插头!
转移 : 若位置 \((i,j)\) 有障碍 , 则看能否从前一格继承过来 , 不能就只能是\(0\)了 .
若无障碍 , 则肯定有转移 : \(f[i][j][k]+=f[i][j−1][k\bigoplus(1<<(j-1))\bigoplus(1<<j)]\)
如果符合条件 , 还能继承结果 : \(f[i][j][k]+=f[i][j−1][k]\)
答案 : \(f[n][m][0]\)
[SCOI2011]地板(插头\(DP\))
分六种情况讨论 , 详见原题解
[九省联考2018]一双木棋(轮廓线&搜索)
这题的搜索做法是对每一个状态\(hsah\)存下答案
轮廓线做法 : 用 \(1\) 表示竖着的轮廓边 , \(0\) 表示横着的轮廓边
然后可以发现 , 状态的转移就是把其中一个 \(1\) 向左挪一个位置即可 \(01−>10\)
然后发现转移的顺序不太明显 , 所以用记忆化搜索 , 反过来写便于理解一些
[ZJOI2007]棋盘制作(悬线法)
[WC2008]游览计划(斯坦纳树)
[JLOI2015]管道连接(斯坦纳树)
[FJOI2017]矩阵填数(扫描线)
\(1.\)离散化出每一块内部不互相影响的块
\(2.\)\(dp[i][j]\)为前 \(i\) 种重叠块其中有 \(j\) 这些状态的矩阵的最大值被满足了的方案数 , 这样转移就之和这个块有关了 , 直接计算取最大值和不取的方案数即可
则当取最大值时,把对应方案数转移到 \(dp[i + 1][j | s[i + 1]]\),否则转移到 \(dp[i + 1][j]\)
故 \(dp[Bcnt][(1 << n) - 1]\)为最终的方案
DP设状态 : 状压与线的更多相关文章
- 2018.08.19 NOIP模拟 dp(二分+状压dp)
Dp 题目背景 SOURCE:NOIP2015-SHY-10 题目描述 一块土地有 n 个连续的部分,用 H[1],H[2],-,H[n] 表示每个部分的最初高度.有 n 种泥土可用,他们都能覆盖连续 ...
- SPOJ - BALNUM Balanced Numbers(数位dp+三进制状压)
Balanced Numbers Balanced numbers have been used by mathematicians for centuries. A positive integer ...
- [NOIP2017] 宝藏 【树形DP】【状压DP】
题目分析: 这个做法不是最优的,想找最优解请关闭这篇博客. 首先容易想到用$f[i][S][j]$表示点$i$为根,考虑$S$这些点,$i$的深度为$j$情况的答案. 转移如下: $f[i][S][j ...
- 洛谷 P1278 单词游戏 【状压dp】
题目描述 Io和Ao在玩一个单词游戏. 他们轮流说出一个仅包含元音字母的单词,并且后一个单词的第一个字母必须与前一个单词的最后一个字母一致. 游戏可以从任何一个单词开始. 任何单词禁止说两遍,游戏中只 ...
- 【洛谷4045】[JSOI2009] 密码(状压+AC自动机上DP)
点此看题面 大致题意: 给你\(n\)个字符串,问你有多少个长度为\(L\)的字符串,使得这些字符串都是它的子串.若个数不大于\(42\),按字典序输出所有方案. 状压 显然,由于\(n\)很小,我们 ...
- 状压DP(超详细!!!)
一.定义 总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式. 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用. 状压dp其实就是将状态 ...
- 状压dp大总结1 [洛谷]
前言 状态压缩是一种\(dp\)里的暴力,但是非常优秀,状态的转移,方程的转移和定义都是状压\(dp\)的难点,本人在次总结状压dp的几个题型和例题,便于自己以后理解分析状态和定义方式 状态压缩动态规 ...
- 状压dp入门
状压dp的含义 在我们解决动态规划题目的时候,dp数组最重要的一维就是保存状态信息,但是有些题目它的具有dp的特性,并且状态较多,如果直接保存的可能需要三维甚至多维数组,这样在题目允许的内存下势必是开 ...
- [NOI2001]炮兵阵地 【状压DP】
#\(\color{red}{\mathcal{Description}}\) \(Link\) 司令部的将军们打算在\(N \times M\)的网格地图上部署他们的炮兵部队.一个\(N \time ...
随机推荐
- Solidity notes
1. 查询transaction历史记录 https://forum.ethereum.org/discussion/2116/in-what-ways-can-storage-history-be- ...
- Luogu 3066 [USACO12DEC]逃跑的BarnRunning Away From…
好像是某CF的题,不记得…… 很套路的题,但是觉得可以做一下笔记. 倍增 + 差分. 有一个比较简单的思路就是每一个点$x$向上走一走,直到走到一个点$y$使总路程恰好不超过超过了$L$,然后把$(x ...
- T-SQL解析json字符串函数
T-SQL解析json字符串函数及其使用示例 参考博文:http://www.cnblogs.com/huangtailang/p/4277809.html 1.解析json字符串函数,返回表变量 A ...
- Open Message Queue 集群问题
nohup ./imqbrokerd -tty -name myBroker -port 7677 -javahome /opt/omae/jdk1.7.0_45 -cluster 192.168.2 ...
- MVC异常过滤器在三种作用范围下的执行顺序
对于一般过滤器(即:除了IExceptionFilter ),当同时在Controller和Action中都设置了同一个过滤器后(例如IActionFilter),执行顺序一般是由外到里,即“全局”- ...
- How Tomcat Works(二十)
要使用一个web应用程序,必须要将表示该应用程序的Context实例部署到一个host实例中.在tomcat中,context实例可以用war文件的形式来部署,也可以将整个web应用拷贝到Tomcat ...
- ABP源码uml类图
陆陆续续学习ABP框架有一段时间了,阳光铭睿的入门教程和HK Zhang的源码分析文章对我的学习帮助都很大.之所以会花这么大工夫去学习ABP.看ABP的源代码,一是因为本人对于DDD也非常有兴趣,AB ...
- [转]xe6 android 使用距离传感器(Proximiry)
The first step it's a run sample from RAD Studio that named SensorInfo on your device. On the tab Bi ...
- 【转】Android Android属性动画深入分析
转载请注明出处:http://blog.csdn.net/singwhatiwanna/article/details/17841165 开篇 像设计模式一样,我们也提出一个问题来引出我们的内容. 问 ...
- Sharepoint2013搜索学习笔记之自定义结果源(七)
搜索中心新建好之后在搜索结果页上会默认有所有内容,人员,对话,视频这四个结果分类,每个分类会返回指定范围的搜索结果,这里我再添加了部门日志结果分类,搜索这个分类只会返回部门日志内容类型的搜索结果,要实 ...