Time Limit: 20 Sec  Memory Limit: 128 MB
Submit: 1555  Solved: 809
[
Submit][Status][Discuss]

Description

  相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔
法矿石炼制法杖的技术。那时人们就认识到,一个法杖的法力取决于使用的矿石。
一般地,矿石越多则法力越强,但物极必反:有时,人们为了获取更强的法力而
使用了很多矿石,却在炼制过程中发现魔法矿石全部消失了,从而无法炼制
出法杖,这个现象被称为“魔法抵消” 。特别地,如果在炼制过程中使用超过
一块同一种矿石,那么一定会发生“魔法抵消”。
  后来,随着人们认知水平的提高,这个现象得到了很好的解释。经过了大量
的实验后,著名法师 Dmitri 发现:如果给现在发现的每一种矿石进行合理的编
号(编号为正整数,称为该矿石的元素序号),那么,一个矿石组合会产生“魔
法抵消”当且仅当存在一个非空子集,那些矿石的元素序号按位异或起来
为零。 (如果你不清楚什么是异或,请参见下一页的名词解释。 )例如,使用两
个同样的矿石必将发生“魔法抵消”,因为这两种矿石的元素序号相同,异或起
来为零。
  并且人们有了测定魔力的有效途径,已经知道了:合成出来的法杖的魔力
等于每一种矿石的法力之和。人们已经测定了现今发现的所有矿石的法力值,
并且通过实验推算出每一种矿石的元素序号。
   现在,给定你以上的矿石信息,请你来计算一下当时可以炼制出的法杖最多
有多大的魔力。

Input

第一行包含一个正整数N,表示矿石的种类数。
  接下来 N行,每行两个正整数Numberi 和 Magici,表示这种矿石的元素序号
和魔力值。

Output

仅包一行,一个整数:最大的魔力值

Sample Input

3
1 10
2 20
3 30

Sample Output

50

HINT

由于有“魔法抵消”这一事实,每一种矿石最多使用一块。
如果使用全部三种矿石,由于三者的元素序号异或起来:1 xor 2 xor 3 = 0 ,
则会发生魔法抵消,得不到法杖。
可以发现,最佳方案是选择后两种矿石,法力为 20+30=50。

对于全部的数据:N ≤ 1000,Numberi ≤ 10^18
,Magici ≤ 10^4

Source

Day2

题解:
       ①保证集合异或不为零,考虑线基。

       ②因为线基里面最多就n个数(n表示位数),那么肯定要先选择权值的大就是最优解了。

#include<stdio.h>
#define ll long long
#define S(x,y) (x^=y^=x^=y)
#define go(i,a,b) for(int i=a;i<=b;i++)
#define ro(i,a,b) for(int i=a;i>=b;i--)
const int N=1003;
int n,val[N],ans,Val;ll num[N];
struct Linear_Base
{
ll a[70];
void Insert(ll x)
{
if(x)ro(i,60,0)if((1ll<<(i))&x)
!a[i]?a[i]=x,ans+=Val,i=0:x^=a[i];
}
}Base;
int main()
{
scanf("%d",&n);
go(i,1,n)scanf("%lld%d",num+i,val+i);
go(i,1,n)go(j,i+1,n)if(val[i]<val[j])S(num[i],num[j]),S(val[i],val[j]);
go(i,1,n)Val=val[i],Base.Insert(num[i]);printf("%d\n",ans);return 0;
}//Paul_Guderian

用那最汹涌的卑微,救赎我们幻灭的渴望。————汪峰《沧浪之歌》

【BZOJ 2460 元素】的更多相关文章

  1. bzoj 2460: 元素 线性基

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=2460 题解: RT 线性基裸题 #include <cstdio> #inc ...

  2. BZOJ 2460 元素(贪心+线性基)

    显然线性基可以满足题目中给出的条件.关键是如何使得魔力最大. 贪心策略是按魔力排序,将编号依次加入线性基,一个数如果和之前的一些数异或和为0就跳过他. 因为如果要把这个数放进去,那就要把之前的某个数拿 ...

  3. -【线性基】【BZOJ 2460】【BZOJ 2115】【HDU 3949】

    [把三道我做过的线性基题目放在一起总结一下,代码都挺简单,主要就是贪心思想和异或的高斯消元] [然后把网上的讲解归纳一下] 1.线性基: 若干数的线性基是一组数a1,a2,a3...an,其中ax的最 ...

  4. BZOJ 2460: [BeiJing2011]元素

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 878  Solved: 470[Submit][Statu ...

  5. BZOJ:2460[BeiJing2011]元素 (异或基+贪心)

    2460: [BeiJing2011]元素 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 2910  Solved: 1535 题目链接:https: ...

  6. BZOJ 2460: [BeiJing2011]元素 线性基

    2460: [BeiJing2011]元素 Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力 ...

  7. bzoj 2460 [BeiJing2011]元素 (线性基)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2460 题意: 给你一堆矿石,矿石有a,b两种性质,取任意个矿石,满足取得的这些矿石a性质异或 ...

  8. BZOJ.2460.[BeiJing2011]元素(线性基 贪心)

    题目链接 线性基:https://blog.csdn.net/qq_36056315/article/details/79819714. \(Description\) 求一组矿石,满足其下标异或和不 ...

  9. BZOJ 2460 [BeiJing2011]元素(线性基模板题)

    Description 相传,在远古时期,位于西方大陆的 Magic Land 上,人们已经掌握了用魔法矿石炼制法杖的技术.那时人们就认识到,一个法杖的法力取决于使用的矿石.一般地,矿石越多则法力越强 ...

随机推荐

  1. phpstorm代码提示不小心关了,如何开启

    在phpstrom右下角单击如图 ​ 出现event log窗口 ​ 如果不是​ 单击切换取消节电模式即可开启代码提示.

  2. nodeJs 对 Mysql 数据库的 curd

    var mysql = require('mysql'); var connection = mysql.createConnection({ host : 'localhost', user : ' ...

  3. python-三级菜单的优化实现

    三级菜单需求: 1.可依次选择进入各子菜单 2.可从任意一层往回退到上一层 3.可从任意一层退出程序 所需新知识点:列表.字典 先通过字典建立数据结构 #创建字典 city_dic = { " ...

  4. http一些常见知识记录

    HTTP请求包(浏览器信息) 我们先来看看Request包的结构, Request包分为3部分,第一部分叫Request line(请求行), 第二部分叫Request header(请求头),第三部 ...

  5. System.Speech使用

    使用微软语音库 使用微软语音库可以很快速的制作一个小应用,比如一个唐诗的朗诵工具.本示例也是使用微软语音库,制作了一个唐诗宋词朗诵的应用,仅供加深学习印象 首先是要引入System.Speech库 然 ...

  6. SGU 495

    #include<bits/stdc++.h> using namespace std; #define ll long long ; ; int n,m; double dp[N]; / ...

  7. .NET基础知识之八——深拷贝,浅拷贝

    目录 1.概念 2.使用赋值符号"=" 3.浅复制 4.深复制 5.问题一:如果类里面嵌套有多个类,然后嵌套类里面又嵌套类,那么像上面实现深拷贝的方法还能用吗? 6.问题二:实现深 ...

  8. 【IIS】 常见问题

    [IIS] 常见问题 1. IIS 安装 .Net FrameWork 4.0 开始->所有程序->附件->鼠标右键点击“命令提示符”->以管理员身份运行->%windi ...

  9. jmeter结合autoit操作windows程序

    需求: 模拟操作下图软件的控件,如拨号和挂机. 1. 下载安装好autoit后,打开finder tool,使用查找工具定位到要模拟操作的控件上,如图: 2.在finder tool中的control ...

  10. Kotlin 1 函数

    #2 函数 函数声明和平时我见到的有点不太一样,使用关键字fun来声明.(感觉好欢乐的样子···O(∩_∩)O~~) 下面的示例,简单的声明了一个函数: // 这是函数声明 fun this_is_a ...