CF762D Maximum Path
题目戳这里。
首先明确一点,数字最多往左走一次,走两次肯定是不可能的(因为只有\(3\)行)。
然后我们用\(f_{i,j}\)表示前\(i\)行,第\(i\)行状态为\(j\)的最优解。(\(j\)表示从第一,二,三,行出来,或者是朝左走了)。
方程应该也好YY。
#include<iostream>
#include<cstdio>
#include<cstdlib>
using namespace std;
typedef long long ll;
const int maxn = 100010; const ll inf = 1LL<<60;
int N; ll f[maxn][4],A[4][maxn];
inline int gi()
{
char ch; int ret = 0,f = 1;
do ch = getchar(); while (!(ch >= '0'&&ch <= '9')&&ch != '-');
if (ch == '-') f = -1,ch = getchar();
do ret = ret*10+ch-'0',ch = getchar(); while (ch >= '0'&&ch <= '9');
return ret*f;
}
int main()
{
freopen("762D.in","r",stdin);
freopen("762D.out","w",stdout);
N = gi();
for (int i = 1;i <= 3;++i) for (int j = 1;j <= N;++j) A[i][j] = gi()+A[i-1][j];
for (int i = 0;i <= N;++i) for (int j = 0;j < 4;++j) f[i][j] = -inf;
f[0][1] = 0;
for (int i = 1;i <= N;++i)
{
for (int j = 1;j <= 3;++j)
for (int k = 1;k <= 3;++k) f[i][j] = max(f[i-1][k]+A[max(j,k)][i]-A[min(j,k)-1][i],f[i][j]);
f[i][1] = max(f[i][1],f[i-1][0]+A[3][i]);
f[i][3] = max(f[i][3],f[i-1][0]+A[3][i]);
f[i][0] = max(f[i][0],max(f[i-1][1],f[i-1][3])+A[3][i]);
}
cout << f[N][3] << endl;
fclose(stdin); fclose(stdout);
return 0;
}
CF762D Maximum Path的更多相关文章
- 题解 CF762D Maximum path
题目传送门 Description 给出一个 \(3\times n\) 的带权矩阵,选出一个 \((1,1)\to (3,n)\) 的路径使得路径上点权之和最大. \(n\le 10^5\) Sol ...
- [LeetCode] Binary Tree Maximum Path Sum 求二叉树的最大路径和
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
- [leetcode]Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- LeetCode(124) Binary Tree Maximum Path Sum
题目 Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequen ...
- LeetCode124:Binary Tree Maximum Path Sum
题目: Given a binary tree, find the maximum path sum. The path may start and end at any node in the tr ...
- leetcode 124. Binary Tree Maximum Path Sum
Given a binary tree, find the maximum path sum. For this problem, a path is defined as any sequence ...
- [lintcode] Binary Tree Maximum Path Sum II
Given a binary tree, find the maximum path sum from root. The path may end at any node in the tree a ...
- 【leetcode】Binary Tree Maximum Path Sum
Binary Tree Maximum Path Sum Given a binary tree, find the maximum path sum. The path may start and ...
- 【leetcode】Binary Tree Maximum Path Sum (medium)
Given a binary tree, find the maximum path sum. The path may start and end at any node in the tree. ...
随机推荐
- NOIP模拟 candy
题目描述 一天,小 DD 决定买一些糖果.他决定在两家不同的商店中买糖果,来体验更多的口味. 在每家商店中都有 nn 颗糖果,每颗糖果都有一个权值:愉悦度,代表小 DD 觉得这种糖果有多好吃.其中,第 ...
- hadoop搭建----centos免密码登录、修改hosts文件
分布式系统在传输数据时需要多台电脑免密码登录 如:A(192.168.227.12)想ssh免密码登录到B(192.168.227.12),需要把A的公钥文件(~/.ssh/id_rsa.pub)里内 ...
- ffmpeg使用笔记
1.从mp4中提取h264:ffmpeg -i 264.mp4 -codec copy -bsf h264_mp4toannexb -f h264 output.h2642.从mp4中提取hevc:f ...
- gp的纯属意外的意外
一不小心,把方法都传过去了,一脸蒙蔽说的就是我,啊哈哈哈啊哈
- 【转载】[Elasticsearch]ES入门
传送门:http://www.cnblogs.com/xing901022 ES即简单又复杂,你可以快速的实现全文检索,又需要了解复杂的REST API.本篇就通过一些简单的搜索命令,帮助你理解ES的 ...
- 1 opencv2.4 + vs2013
http://blog.csdn.net/poem_qianmo/article/details/19809337 1.安装vs2013 2.安装opencv2.4 下载地址:https://sour ...
- 深度学习之卷积神经网络CNN
转自:https://blog.csdn.net/cxmscb/article/details/71023576 一.CNN的引入 在人工的全连接神经网络中,每相邻两层之间的每个神经元之间都是有边相连 ...
- lnmp操作
LNMP 1.2+状态管理: lnmp {start|stop|reload|restart|kill|status}LNMP 1.2+各个程序状态管理: lnmp {nginx|mysql|mari ...
- [转] Bash脚本:怎样一行行地读文件(最好和最坏的方法)
用bash脚本读文件的方法有很多.请看第一部分,我使用了while循环及其后的管道命令(|)(cat $FILE | while read line; do … ),并在循环当中递增 i 的值,最后, ...
- 1,理解java中的IO
IO中的几种形式 基于字节:InputStream.OutputStream 基于字符:Writer.Reader 基于磁盘:File 基于网络Socket 最终都是字节操作,字符到字节要编码转换 ...