参考与前言

Summary: leaderboard 现存第一名 TCP,非常simple的设置 取得了很好的效果

论文链接:Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline

代码链接:https://github.com/OpenPerceptionX/TCP 作者回复预计9月开

jg刷到的时候 我旁边看了一眼 这些框架图为什么这么熟… 后面仔细看才发现喔 吸取各家之长处了 简单传感器的高分 真绝啊

1. Motivation

对于端到端的驾驶任务,一般是从预测出轨迹,然后用控制器跟随;另一种则是直接预测controller输出;由两种方法启发,作者时候:可以吸取各自优点,然后提出本文方法

Contribution

  1. 调研尝试了两种方法,然后提出了结合的pipeline
  2. multi-step control 预测使得 temporal reasoning
  3. CARLA排行榜第一名 (排名榜查看时间June 25, 2022 )

2. Method

专家使用的是Roach 【用RL训练出的一种专家策略】,这里 小声提一句 我收集了一下现有开源的专家【Roach, SEED, AUTO, MMFN】,然后给了一个repo carla-expert 来给大家做收集用… 感兴趣可以去点个star;如果后面你想做这个任务 肯定是可以用上的,毕竟第一次做任务的时候 我一个月都在搞数据那一环

原来e2e也可以写公式 涨见识,大概就是学到的策略和专家数据的loss 在整个数据集\(\mathrm{D}=\{(x,a^*)\}\)下 取最小的

\[\arg \min _{\theta} \mathbb{E}_{\left(\mathrm{x}, \mathbf{a}^{*}\right) \sim \mathrm{D}}\left[\mathcal{L}\left(\mathbf{a}^{*}, \pi_{\theta}(\mathbf{x})\right)\right] \tag{1}
\]

2.1 框架

  • 整体前面encoder框架 可以对比着CILRS
  • Loss设计可以看看Roach一文

输入:一帧图片;当前帧的速度,high command,目标点等

网络细节,在附录和正文里有简洁的说明:

  1. 相机尺寸是900x256,FOV直接拉满为100
  2. K = 4 也就是选未来四步steps 的动作/轨迹进入
  3. Image Encoder 使用的是有预训练的 ResNet-34
  4. measurement encoder则是一个MLP [全文并未仔细说明具体几层;暂且认为和CILRS一致设置 也就是 根据输入的num 对应相应数量的linear到encoder里] → 128
  5. 各自encoder的输出 concat到一起 组成 \(\bf{j}^{traj}\) → 256

接下来 两个branch都直接取共同输出的feature进入各自的分支

  • 那… loss怎么backpropagate?

    见loss 部分, 各自loss 相加,直接.backward()

2.2 Trajectory Branch

和[16]一样将 \(\bf{j}^{traj}\) 送到GRU里,应该是和transfuser的操作一样,大概是下图这个感觉:

摘自 transfuser 一文

其中 因为有 experts的真值 (x,y) 轨迹点作为参考,所以可以算loss

注意看整体框架图,其中得到这些轨迹点后,使用的是两个横纵向PID进行轨迹到控制量的传递,不同于之前的方法,这里的PID控的是横纵向error,大部分以前方法基本都是一个速度控制(给定一个速度),一个转向控制为主

2.3 Multi-Step Control Branch

这里提出了一个比较重要的点:之前这种 基于当前的输入 预测下一个输出,整体输出都是独立同分布假设。但实际上 当前输入与历史输入,和未来输出之间并不是独立的。 对比与用MDP(马尔科夫决策过程)和RL进行回溯/往前,提出了一种更为简单的方式

首先单看主框架图里对应的淡黄色模块,

temporal module输入是 \(\mathbf{j}_{\mathrm{t}}^{\text {ctl }}\) 和 \(\mathbf a_t^{ctl}\) concat后的,其中:

\[\mathbf{j}_{\mathrm{t}}^{\text {ctl }}=\operatorname{MLP}\left(\text { Concat }\left[\operatorname{Sum}\left(\operatorname{Softmax}\left(\mathbf{w}_{\mathrm{t}}\right) \odot \mathbf{F}\right), \mathbf{h}_{\mathrm{t}}^{\text {ctl }}\right]\right)
\]

其中\(\bf w_t\)是由t时刻的 hidden state concat在一起的,如下图公式:

而\(\mathbf h_t^{traj}, \mathbf h_t^{ctl}\)是从各自的Trajectory Branch和Control Branch而来


问题区:

  • 但是这里有点疑惑的是 branch内部哪一部分的hidden state?

    图三中两个模块都是GRU实现的,hidden state从每个GRU里得到

  • Trajectory是GRU 可能是t下GRU,所以K是代表有几个GRU模块?

    是的

  • 但Control branch是啥网络 MLP?那是哪一层的hidden state呢?

    是MLP hidden state都是各自GRU里来的,图三中输出前的两个均为MLP

2.4 Loss 设计

主要为三种,轨迹、控制和附加loss

对于轨迹:

其中与transfuser不同的是加入了feature的loss进来,j是128维度的

对于控制:

对于附加,从image feature 加了速度预测head L1 loss 和一个value predict 预测expected return 同[55]一样,L2 Loss

然后三个loss 相加:

\[\mathcal{L}=\lambda_{t r a j} \cdot \mathcal{L}_{t r a j}+\lambda_{c t l} \cdot \mathcal{L}_{c t l}+\lambda_{a u x} \cdot \mathcal{L}_{a u x}
\]

问题区:

  • 咦 feature… 怎么做loss,expert的feature不也是同一个网络输出的嘛 可以这样玩?

    roach 做法,由BEV下的gt 做的不同的输入,但是不知道是直接收集的expert的feature还是说用BEV输入到这个网络做的loss

    • 可能得去瞅瞅 roach的 loss玩法

2.5 Fusion Approach

融合的方法也挺工程的,直接判断 过去1s内的steer 绝对值相加 是否超过0.1,如果超过则认为你正在执行转弯,就切换到 以轨迹分支为主;否则以多步控制分支为主

3. 实验及结果

实验和结果 个人觉得作者有点省事了… 因为直接抽的leaderboard,但是!CARLA排行榜不同于其他的地方是:数据集是你自己创建的,一般情况下,大家都会多多少少去用自己的数据集训练出来其他方法的agent 在同一个expert training下的对比… 【大概意思呢就是:实验条件并不一致,虽然从线上来说你是好的 但是可能其他人只用了你1/2的数据…】

不过 这并不能说明方法不有效,毕竟 这可是一个相机能干到的分数啊,我深表佩服!以下仅仅是截图一下各个实验表格和可视化的,因为太熟悉这个任务了 就不再说明了,感兴趣 想尝试一下榜的可以看看 相关CARLA leaderbaord配置教学文章 其中包含了指标说明

一些在自己方法下 控制变量的 消融实验

碎碎念

此部分碎碎念 有些在前面实验中念完了 hhhh 来自jg的碎碎念:对CARLA leaderboard的完全过拟合 hhhh 毕竟这种方法是真的不会在车上尝试的吧… LAV的方法至少有条件是可以在实车上测一波,从可解释性上会强很多 比如 找原因啥的,但是LAV真的太太太大了,这个方法 第一次成绩匿名的时候 我觉得不可能.. 还自己quick setting了一波一个相机的实验 但是效果并不好 (当时TCP文章还没挂出来哈)… 所以后面看看有没有机会 看文章简单复现一下

PS 现在大家的数据集 真是一个比一个高,自己当时做的时候 100K帧数据都不到… LAV 390K,TCP 420K,现在想来 好像知道自己分数为啥差距这么大了 也是一个到后面有点玩不懂的任务,不过planning也就这一个任务… 榜单可以刷刷


赠人点赞 手有余香 ;正向回馈 才能更好开放记录 hhh

【论文阅读】Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline的更多相关文章

  1. 论文阅读 | Region Proposal by Guided Anchoring

    论文阅读 | Region Proposal by Guided Anchoring 相关链接 论文地址:https://arxiv.org/abs/1901.03278 概述 众所周知,anchor ...

  2. 【论文阅读】Motion Planning through policy search

    想着CSDN还是不适合做论文类的笔记,那里就当做技术/系统笔记区,博客园就专心搞看论文的笔记和一些想法好了,[]以后中框号中间的都算作是自己的内心OS 有时候可能是问题,有时候可能是自问自答,毕竟是笔 ...

  3. 论文阅读笔记六:FCN:Fully Convolutional Networks for Semantic Segmentation(CVPR2015)

    今天来看一看一个比较经典的语义分割网络,那就是FCN,全称如题,原英文论文网址:https://people.eecs.berkeley.edu/~jonlong/long_shelhamer_fcn ...

  4. [置顶] 人工智能(深度学习)加速芯片论文阅读笔记 (已添加ISSCC17,FPGA17...ISCA17...)

    这是一个导读,可以快速找到我记录的关于人工智能(深度学习)加速芯片论文阅读笔记. ISSCC 2017 Session14 Deep Learning Processors: ISSCC 2017关于 ...

  5. 论文阅读 | FoveaBox: Beyond Anchor-based Object Detector

    论文阅读——FoveaBox: Beyond Anchor-based Object Detector 概述 这是一篇ArXiv 2019的文章,作者提出了一种新的anchor-free的目标检测框架 ...

  6. YOLO 论文阅读

    YOLO(You Only Look Once)是一个流行的目标检测方法,和Faster RCNN等state of the art方法比起来,主打检测速度快.截止到目前为止(2017年2月初),YO ...

  7. Lane-Detection 近期车道线检测论文阅读总结

    近期阅读的几篇关于车道线检测的论文总结. 1. 车道线检测任务需求分析 1.1 问题分析 针对车道线检测任务,需要明确的问题包括: (1)如何对车道线建模,即用什么方式来表示车道线. 从应用的角度来说 ...

  8. [论文阅读]阿里DIN深度兴趣网络之总体解读

    [论文阅读]阿里DIN深度兴趣网络之总体解读 目录 [论文阅读]阿里DIN深度兴趣网络之总体解读 0x00 摘要 0x01 论文概要 1.1 概括 1.2 文章信息 1.3 核心观点 1.4 名词解释 ...

  9. [论文阅读]阿里DIEN深度兴趣进化网络之总体解读

    [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 目录 [论文阅读]阿里DIEN深度兴趣进化网络之总体解读 0x00 摘要 0x01论文概要 1.1 文章信息 1.2 基本观点 1.2.1 DIN的 ...

  10. [论文阅读] RNN 在阿里DIEN中的应用

    [论文阅读] RNN 在阿里DIEN中的应用 0x00 摘要 本文基于阿里推荐DIEN代码,梳理了下RNN一些概念,以及TensorFlow中的部分源码.本博客旨在帮助小伙伴们详细了解每一步骤以及为什 ...

随机推荐

  1. sqli-labs-master 第十一关

    本关为POST请求: 输入:admin'# 密码:随意 爆出当前数据库: 用户名:payload1:admin' and extractvalue(1,concat(0x7e,database(),0 ...

  2. Ajax 请求总共有八种 Callback

    1)onSuccess 2)onFailure 3)onUninitialized 4)onLoading 5)onLoaded 6)onInteractive 7)onComplete 8)onEx ...

  3. js与jquery实例-拖动改变列宽和行高

    js与jquery实例-拖动改变列宽和行高 如何通过javascript或者jquery实现改变表格宽度或者行高的功能?今天就把这个功能代码分享给大家,绝对原创哦,代码少而且易懂.先看效果图: htm ...

  4. post请求和get请求区别及其实例

    1.一般我们在浏览器输入一个网址访问网站都是GET请求;在FORM表单中,可以通过设置Method指定提交方式为GET或者POST提交方式,默认为GET提交方式.HTTP定义了与服务器交互的不同方法, ...

  5. 【C#】初次使用webapi的体会

    webapi controller 要继承 ApiController   重写权限验证 ,记得使用 System.Web.Http下的AuthorizeAttribute.   webapi默认路由 ...

  6. ISCC 2024 练武题 misc趣题记录

    Number_is_the_key 题目 The answers to the questions are hidden in the numbers. 文件是空白的xlsx文件 我的解答: 乱点发现 ...

  7. nginx获取后端真实IP,添加后端服务器响应时间并记录日志

    nginx获取后端真实IP,添加后端服务器响应时间并记录日志 1.日志定义 log_format nginx '$remote_addr - $remote_user [$time_local] &q ...

  8. 一文搞懂 ARM 64 系列: 寄存器

    ARM 64中包含多种寄存器,下面介绍一些常见的寄存器. 1 通用寄存器 ARM 64包含31个64bit寄存器,记为X0~X30. 每一个通用寄存器,它的低32bit都可以被访问,记为W0~W30. ...

  9. restful接口返回JSONObject和父类抽象实现类设计,请求头获取sign和支付宝RSA签名验签工具类方法

    restful接口返回JSONObject和父类抽象实现类设计,请求头获取sign和支付宝RSA签名验签工具类方法 1.JSONObject可以通用数据的灵活性,类似Map数据,数据字段不清晰.具体返 ...

  10. java rabbitmq模拟生产者,消费者demo

    1.exchange类型,rabbitmq交换机类型 exchange类型fanout 扇形交换机,它会把所有发送到该交换机的消息路由到所有与该交换机绑定的队列中.direct 直连交换机,它会把消息 ...