[ABC318G] Typical Path Problem
Problem Statement
You are given a simple connected undirected graph $G$ with $N$ vertices and $M$ edges.
The vertices and edges of $G$ are numbered as vertex $1$, vertex $2$, $\ldots$, vertex $N$, and edge $1$, edge $2$, $\ldots$, edge $M$, respectively, and edge $i$ $(1\leq i\leq M)$ connects vertices $U_i$ and $V_i$.
You are also given distinct vertices $A,B,C$ on $G$.
Determine if there is a simple path connecting vertices $A$ and $C$ via vertex $B$.
What is a simple connected undirected graph?
A graph $G$ is said to be a simple connected undirected graph when $G$ is an undirected graph that is simple and connected.
A graph $G$ is said to be an undirected graph when the edges of $G$ have no direction.
A graph $G$ is simple when $G$ does not contain self-loops or multi-edges.
A graph $G$ is connected when one can travel between all vertices of $G$ via edges.
Constraints
- $3 \leq N \leq 2\times 10^5$
- $N-1\leq M\leq\min\left(\frac{N(N-1)}{2},2\times 10^5\right)$
- $1\leq A,B,C\leq N$
- $A$, $B$, and $C$ are all distinct.
- $1\leq U_i<V_i\leq N$
- The pairs $(U_i,V_i)$ are all distinct.
- All input values are integers.
点不能重复,考虑圆方树。
如果 \(A,B,C\) 在一个点双内,那么一定没问题。因为删掉B 这个点一定还有路径可以到 \(C\)
那么在圆方树上的体现就是 A,B,C 连着同一个方点。
以此类推,如果 \(A,C\) 在圆方树上的路径通过了一个 B 所连的方点,那么就可以,否则割点不能重复走,所以不行。
#include<bits/stdc++.h>
using namespace std;
const int N=4e5+5;
int n,m,a,b,c,vs[N],st[N],tp,idx,dfn[N],low[N];
struct graph{
int hd[N],e_num;
struct edge{
int v,nxt;
}e[N<<1];
void add_edge(int u,int v)
{
e[++e_num]=(edge){v,hd[u]};
hd[u]=e_num;
e[++e_num]=(edge){u,hd[v]};
hd[v]=e_num;
}
}g,h;
int read()
{
int s=0;
char ch=getchar();
while(ch<'0'||ch>'9')
ch=getchar();
while(ch>='0'&&ch<='9')
s=s*10+ch-48,ch=getchar();
return s;
}
void tarjan(int x)
{
dfn[x]=low[x]=++idx;
st[++tp]=x;
for(int i=g.hd[x];i;i=g.e[i].nxt)
{
int v=g.e[i].v;
if(!dfn[v])
{
tarjan(v);
low[x]=min(low[x],low[v]);
if(low[v]==dfn[x])
{
++n;
while(st[tp]^v)
h.add_edge(n,st[tp--]);
h.add_edge(n,st[tp--]);
h.add_edge(x,n);
}
}
else
low[x]=min(low[x],dfn[v]);
}
}
void dfs(int x,int y)
{
st[++tp]=x;
if(x==c)
{
for(int i=1;i<=tp;i++)
vs[st[i]]=1;
return;
}
for(int i=h.hd[x];i;i=h.e[i].nxt)
if(h.e[i].v^y)
dfs(h.e[i].v,x);
--tp;
}
int main()
{
n=read(),m=read(),a=read(),b=read(),c=read();
for(int i=1,u,v;i<=m;i++)
g.add_edge(read(),read());
tarjan(a);
dfs(a,0);
for(int i=h.hd[b];i;i=h.e[i].nxt)
if(vs[h.e[i].v])
return puts("Yes"),0;
puts("No");
}
[ABC318G] Typical Path Problem的更多相关文章
- Eclipse 项目红色叹号:Build Path Problem
Description Resource Path Location TypeA cycle was detected in the build path of project 'shgl-categ ...
- Solve Longest Path Problem in linear time
We know that the longest path problem for general case belongs to the NP-hard category, so there is ...
- Why longest path problem doesn't have optimal substructure?
We all know that the shortest path problem has optimal substructure. The reasoning is like below: Su ...
- Codefroces Educational Round 27 845G Shortest Path Problem?
Shortest Path Problem? You are given an undirected graph with weighted edges. The length of some pat ...
- 干货 | 列生成VRPTW子问题ESPPRC( Elementary shortest path problem with resource constraints)介绍附C++代码
00 前言 各位小伙伴大家好,相信大家已经看过前面column generation求解vehicle routing problems的过程详解.该问题中,子问题主要是找到一条reduced cos ...
- 安装数据库Typical path for xclock: /usr/X11R6/bin/xclock 错误问题
[oracle@localhost database]$ ./runInstaller Starting Oracle Universal Installer... Checking Temp spa ...
- [BFS,A*,k短路径] 2019中国大学生程序设计竞赛(CCPC) - 网络选拔赛 path (Problem - 6705)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=6705 path Time Limit: 2000/2000 MS (Java/Others) Mem ...
- 【CF edu 27 G. Shortest Path Problem?】
time limit per test 3 seconds memory limit per test 512 megabytes input standard input output standa ...
- Codeforces 845G Shortest Path Problem?
http://codeforces.com/problemset/problem/845/G 从顶点1dfs全图,遇到环则增加一种备选方案,环上的环不需要走到前一个环上作为条件,因为走完第二个环可以从 ...
- Project 'king.commons' is missing required library: 'lib/plweb.jar' Build path Build Path Problem
问题描述:之前在项目里引用一个jar 包,后来不用了删掉 ,但是没有删干净,然后报以下错误. 解决方案: 1.删除libraries 2.找到该项目下的 .classpath 文件,用记事本打开 ,删 ...
随机推荐
- 6、Mybatis之高级查询
6.1.创建接口.映射文件和测试类 ++++++++++++++++++++++++++分割线++++++++++++++++++++++++++ 注意namespace属性值为对应接口的全限定类名 ...
- 数据可视化【原创】vue+arcgis+threejs 实现流光边界线效果
本文适合对vue,arcgis4.x,threejs,ES6较熟悉的人群食用. 效果图: 素材: 主要思路: 先用arcgis externalRenderers封装了一个ExternalRender ...
- 程序员 不得不知道的 API 接口常识
说实话,我非常希望自己能早点看到本篇文章,大学那个时候懵懵懂懂,跟着网上的免费教程做了一个购物商城就屁颠屁颠往简历上写. 至今我仍清晰地记得,那个电商教程是怎么定义接口的: 管它是增加.修改.删除.带 ...
- 深入了解商品详情API接口的使用方法与数据获取
作为程序员,了解和熟悉如何调用API接口获取淘宝商品数据是非常重要的.在现今的电商环境中,准确.及时地获取商品详情信息对于开发者和商家来说至关重要.本文将以程序员的视角,详细介绍如何调用API接口 ...
- Microsoft Build 2021大会开始后,Develop Blog一系列更新
.NET BLOG 发布.NET 6预览版4 https://devblogs.microsoft.com/dotnet/announcing-net-6-preview-4/ 发布.NET MAUI ...
- 01.前后端分离中台框架后端 Admin.Core 学习-介绍与配置说明
中台框架后端项目 Admin.Core 的介绍与配置说明 中台admin是前后端分离权限管理系统,Admin.Core为后端项目,基于.NET 7.0开发. 支持多租户.数据权限.动态 Api.任务调 ...
- E-GraphSAGE: A Graph Neural Network based Intrusion Detection System 笔记
E-GraphSAGE: A Graph Neural Network based Intrusion Detection System 目录 E-GraphSAGE: A Graph Neural ...
- 用现代C++写一个python的简易型list
std::variant介绍:en.cppreference.com/w/cpp/utility/variant 通过泛型模板(仅提供了int, double, string三种类型的存储),实现了a ...
- 关于Word转PDF的几种实现方案
在.NET中,你可以使用Microsoft.Office.Interop.Word库来进行Word到PDF的转换.这是一个示例代码,但请注意这需要在你的系统上安装Microsoft Office. 在 ...
- MySQL PXC 集群运维指南
目录 一.PXC方案概述 二.PXC基础知识 三.PXC节点的配置安装 四.PXC节点的上线与下线 五.其他 一.PXC方案概述 Percona XtraDB Cluster (PXC) 是一个完全开 ...