Ascend CL两种数据预处理的方式:AIPP和DVPP
摘要:本文介绍了昇腾CANN提供的两种数据预处理的方式:DVPP和AIPP,介绍了两者的功能、差别及联系,并以具体代码示例介绍了如何使用DVPP和AIPP的功能。
本文分享自华为云社区《了解AscendCL数据预处理的两种方式:AIPP和DVPP》,作者:昇腾CANN。
数据预处理的典型使用场景
受网络结构和训练方式等因素的影响,绝大多数神经网络模型对输入数据都有格式上的限制。在计算机视觉领域,这个限制大多体现在图像的尺寸、色域、归一化参数等。如果源图或视频的尺寸、格式等与网络模型的要求不一致时,我们需要对其处理,使其符合模型的要求,这个操作,一般称之为数据预处理。
AIPP、DVPP,它们都能做什么
CANN提供了两套专门用于数据预处理的方式:AIPP和DVPP。
总结一下,虽然都是数据预处理,但AIPP与DVPP的功能范围不同(比如DVPP可以做图像编解码、视频编解码,AIPP可以做归一化配置),处理数据的计算单元也不同,AIPP用的AI Core计算加速单元,DVPP就是用的专门的图像处理单元。
AIPP、DVPP可以分开独立使用,也可以组合使用。组合使用场景下,一般先使用DVPP对图片/视频进行解码、抠图、缩放等基本处理,但由于DVPP硬件上的约束,DVPP处理后的图片格式、分辨率有可能不满足模型的要求,因此还需要再使用AIPP进行色域转换、抠图、填充等处理。
例如,在昇腾310 AI处理器,由于DVPP仅支持输出YUV格式的图片,如果模型需要RGB格式的图片,则需要再使用AIPP进行色域转换。
如何使用AIPP功能
下文以此为例:测试图片分辨率为250*250、图片格式为YUV420SP,模型对图片的要求为分辨率224*224、图片格式为RGB,因此需要通过AIPP实现抠图、图片格式转换2个功能。关于各种格式转换,其色域转换系数都有模板,可从《ATC工具使用指南》获取,参见“昇腾文档中心”。
静态AIPP
1.构造AIPP配置文件*.cfg。
抠图:有效数据区域从左上角(0, 0)像素开始,抠图宽*高为224*224。
图片格式转换:输入图片格式为YUV420SP_U8,输出图片格式通过色域转换系数控制。
aipp_op {
aipp_mode : static # AIPP配置模式
input_format : YUV420SP_U8 # 输入给AIPP的原始图片格式
src_image_size_w : 250 # 输入给AIPP的原始图片宽高
src_image_size_h : 250
crop: true # 抠图开关,用于改变图片尺寸
load_start_pos_h: 0 # 抠图起始位置水平、垂直方向坐标
load_start_pos_w: 0
crop_size_w: 224 # 抠图宽、高
crop_size_h: 224
csc_switch : true # 色域转换开关
matrix_r0c0 : 256 # 色域转换系数
matrix_r0c1 : 0
matrix_r0c2 : 359
matrix_r1c0 : 256
matrix_r1c1 : -88
matrix_r1c2 : -183
matrix_r2c0 : 256
matrix_r2c1 : 454
matrix_r2c2 : 0
input_bias_0 : 0
input_bias_1 : 128
input_bias_2 : 128
}
2.使能静态AIPP。
使用ATC工具转换模型时,可将AIPP配置文件通过insert_op_conf参数传入,将其配置参数保存在模型文件中。
atc --framework=3 --soc_version=${soc_version}
--model= $HOME/module/resnet50_tensorflow.pb
--insert_op_conf=$HOME/module/insert_op.cfg
--output=$HOME/module/out/tf_resnet50
参数解释如下:
- framework:原始网络模型框架类型,3表示TensorFlow框架。
- soc_version:指定模型转换时昇腾AI处理器的版本,例如Ascend310。
- model:原始网络模型文件路径,含文件名。
- insert_op_conf:AIPP预处理配置文件路径,含文件名。
- output:转换后的*.om模型文件路径,含文件名,转换成功后,文件名自动以.om后缀结尾。
3.调用AscendCL接口加载模型,执行推理。
可参考往期的技术文章,请参见“基于昇腾计算语言AscendCL开发AI推理应用”。
动态AIPP
1.构造AIPP配置文件*.cfg。
aipp_op
{
aipp_mode: dynamic
max_src_image_size: 752640 # 输入图像最大内存大小,需根据实际情况调整
}
2.使能动态AIPP。
使用ATC工具转换模型时,可将AIPP配置文件通过insert_op_conf参数传入,将其配置参数保存在模型文件中。
atc --framework=3 --soc_version=${soc_version}
--model= $HOME/module/resnet50_tensorflow.pb
--insert_op_conf=$HOME/module/insert_op.cfg
--output=$HOME/module/out/tf_resnet50
参数解释如下:
- framework:原始网络模型框架类型,3表示TensorFlow框架。
- soc_version:指定模型转换时昇腾AI处理器的版本,例如Ascend310。
- model:原始网络模型文件路径,含文件名。
- insert_op_conf:AIPP预处理配置文件路径,含文件名。
- output:转换后的*.om模型文件路径,含文件名,转换成功后,文件名自动以.om后缀结尾。
3.调用AscendCL接口加载模型,设置AIPP参数后,再执行推理。
模型加载、执行可从参考往期的技术文章,请参见“基于昇腾计算语言AscendCL开发AI推理应用”。
调用AscendCL接口设置AIPP参数的代码示例如下:
aclmdlAIPP *aippDynamicSet = aclmdlCreateAIPP(batchNumber);
aclmdlSetAIPPSrcImageSize(aippDynamicSet, 250, 250);
aclmdlSetAIPPInputFormat(aippDynamicSet, ACL_YUV420SP_U8);
aclmdlSetAIPPCscParams(aippDynamicSet, 1, 256, 0, 359, 256, -88, -183, 256, 454, 0, 0, 0, 0, 0, 128, 128);
aclmdlSetAIPPCropParams(aippDynamicSet, 1, 2, 2, 224, 224, 0);
aclmdlSetInputAIPP(modelId, input, index, aippDynamicSet);
aclmdlDestroyAIPP(aippDynamicSet);复制
如何使用DVPP功能
昇腾AI处理器内置图像处理单元DVPP,提供了强大的媒体处理硬加速能力。同时,异构计算架构CANN提供了使用图像处理硬件算力的入口:AscendCL接口,开发者可通过接口来进行图像处理,以便利用昇腾AI处理器的算力。
DVPP内的功能模块如下所示。
此处就以JPEGD图片解码+VPC图片缩放为例来说明如何使用DVPP功能。这里先通过一张图总览接口调用流程,包括资源初始化&去初始化、通道创建与销毁、解码、缩放、等待任务完成、释放内存资源等。
总览接口调用流程后,接下来我们以开发者更熟悉的方式“代码”来展示JPEGD图片解码+VPC图片缩放功能的关键代码逻辑。
// 创建通道
acldvppChannelDesc dvppChannelDesc = acldvppCreateChannelDesc();
acldvppCreateChannel(dvppChannelDesc);
// 在JPEGD图片解码前,准备其输入、输出
// ……
// 创建解码输出图片描述信息,设置输出图片的宽、高、图片格式、内存地址等
acldvppPicDesc decodeOutputDesc = acldvppCreatePicDesc();
acldvppSetPicDescData(decodeOutputDesc, decodeOutputBuffer));
acldvppSetPicDescWidth(decodeOutputDesc, decodeOutputWidth);
acldvppSetPicDescHeight(decodeOutputDesc, decodeOutputHeight);
// 此处省略其它set接口……
// 执行JPEGD图片解码
acldvppJpegDecodeAsync(dvppChannelDesc, decodeInputBuffer, decodeInputBufferSize, decodeOutputDesc, stream);
// 5. 在VPC图片缩放前,准备其输入、输出
// 创建缩放输入图片的描述信息,并设置各属性值,解码的输出作为缩放的输入
acldvppPicDesc resizeInputDesc = acldvppCreatePicDesc();
acldvppSetPicDescData(resizeInputDesc, decodeOutputBuffer);
acldvppSetPicDescWidth(resizeInputDesc, resizeInputWidth);
acldvppSetPicDescHeight(resizeInputDesc, resizeInputHeight);
// 此处省略其它set接口……
// 创建缩放输出图片的描述信息,并设置各属性值
acldvppPicDesc resizeOutputDesc = acldvppCreatePicDesc();
acldvppSetPicDescData(resizeOutputDesc, resizeOutputBuffer);
acldvppSetPicDescWidth(resizeOutputDesc, resizeOutputWidth);
acldvppSetPicDescHeight(resizeOutputDesc, resizeOutputHeight);
// 此处省略其它set接口……
// 6. 执行VPC图片缩放
acldvppVpcResizeAsync(dvppChannelDesc, resizeInputDesc,
resizeOutputDesc, resizeConfig, stream);
// 7. JPEGD图片解码、VPC图片缩放都是异步任务,需调用以下接口阻塞程序运行,直到指定Stream中的所有任务都完成
aclrtSynchronizeStream(stream);
本节通过接口调用流程、示例代码带大家了解了DVPP的功能开发,更多DVPP的功能介绍及使用请参见“昇腾文档中心”。
Ascend CL两种数据预处理的方式:AIPP和DVPP的更多相关文章
- 两种获取connectionString的方式
两种获取connectionString的方式 1. public static string connectionString = ConfigurationManager.ConnectionSt ...
- Spring两种实现AOP的方式
有两种实现AOP的方式:xml配置文件的方式和注解的形式 我们知道通知Advice是指对拦截到的方法做什么事,可以细分为 前置通知:方法执行之前执行的行为. 后置通知:方法执行之后执行的行为. 异常通 ...
- javascript两种声明函数的方式的一次深入解析
声明函数的方式 javascript有两种声明函数的方式,一个是函数表达式定义函数,也就是我们说的匿名函数方式,一个是函数语句定义函数,下面看代码: /*方式一*/ var FUNCTION_NAME ...
- Java中有两种实现多线程的方式以及两种方式之间的区别
看到一个面试题.问两种实现多线程的方法.没事去网上找了找答案. 网上流传很广的是一个网上售票系统讲解.转发过来.已经不知道原文到底是出自哪里了. Java中有两种实现多线程的方式.一是直接继承Thre ...
- Hibernate中两种获取Session的方式
转自:https://www.jb51.net/article/130309.htm Session:是应用程序与数据库之间的一个会话,是hibernate运作的中心,持久层操作的基础.对象的生命周期 ...
- 如何理解redis两种不同的持久化方式
其实redis就是一种高级的以键值对形式存储数据的数据库,而它的好处就是他可以支持数据的持久化,其实redis之所以会有这样的优点,主要是因为,redis的数据都是存放在内存中的,如果不配置持久化,那 ...
- Java学习-013-文本文件读取实例源代码(两种数据返回格式)
此文源码主要为应用 Java 读取文本文件内容实例的源代码.若有不足之处,敬请大神指正,不胜感激! 1.读取的文本文件内容以一维数组[LinkedList<String>]的形式返回,源代 ...
- OC中两种单例实现方式
OC中两种单例实现方式 写在前面 前两天探索了一下C++ 的单例,领悟深刻了许多.今天来看看OC中的单例又是怎么回事.查看相关资料,发现在OC中一般有两种实现单例的方式,一种方式是跟C++ 中类似的常 ...
- JIT(Just in time,即时编译,边运行边编译)、AOT(Ahead Of Time,运行前编译),是两种程序的编译方式
JIT(Just in time,即时编译,边运行边编译).AOT(Ahead Of Time,运行前编译),是两种程序的编译方式
- FMX有两种消息处理的实现方式,一种是用TMessageManager来实现自定义的消息,另外一种象TEdit中的实现,直接声明消息方法(firemonkey messaging)
看FMX代码,发现有两种消息处理的实现方式,一种是用TMessageManager来实现自定义的消息,另外一种象TEdit中的实现,直接声明消息方法. 早前,看过文章说TMessageManage ...
随机推荐
- 【Unity3D】Shader Graph节点
1 前言 Shader Graph 16.0.3 中有 208 个 Node(节点),本文梳理了 Shader Graph 中大部分 Node 的释义,官方介绍详见→Node-Library. ...
- 【RocketMQ】数据的清理机制
Broker在启动的时候会注册定时任务,定时清理过期的数据,默认是每10s执行一次,分别清理CommitLog文件和ConsumeQueue文件: public class DefaultMessag ...
- JavaScript(ES6):变量的解构赋值
解构赋值定义: 允许按照一定模式从数组或对象中提取值,然后对变量进行赋值. 数组的解构赋值 注:数组的元素要一次排序的,变量的值由他的位置决定. 基本用法 // ES6 解构赋值 let [a, b, ...
- 聊聊RNN与Attention
RNN系列: 聊聊RNN&LSTM 聊聊RNN与seq2seq attention mechanism,称为注意力机制.基于Attention机制,seq2seq可以像我们人类一样,将&quo ...
- CodeDesk-一个新款跨平台桌面开发框架
CodeDesk 的灵感来自 Electron和Photino.这是一个基于 .NET 的开源项目. CodeDesk 的目标是使开发人员能够在跨平台的本机应用程序中使用 Web UI(HTML.Ja ...
- 2022.7.12 thecold 讲课纪要
前言 上午刚学完平衡树,听学长说下午讲 \(LCT\) ,想了想就我这种蒟蒻平衡树还写不明白就搞 \(LCT\) ,绝对会挂,就打算下午去初中集训班摸摸鱼. 一进去就看见了 thecold 学长,真的 ...
- 2021 ICPC济南 J Determinant
题意就是给定一个矩阵,然后给出他的行列式的绝对值,这个值是精确的,然后让我们判断行列式的正负. 思路来源:一个Acmer 首先做这个题要明白一个性质才可以做,一个数和它的相反数对一个奇数的取模一定不同 ...
- MyBatis-Plus雪花算法实现源码解析
1. 雪花算法(Snowflake Algorithm) 雪花算法(Snowflake Algorithm)是一种用于生成唯一标识符(ID)的分布式算法.最初由 Twitter 公司开发,用于生成其内 ...
- 聊一聊 C# 线程切换后上下文都去了哪里
一:背景 1. 讲故事 总会有一些朋友是不是问一个问题,在 Windows 中线程做了上下文切换,请问被切的线程他的寄存器上下文都去了哪里?能不能给我挖出来?这个问题其实比较底层,如果对操作系统没有个 ...
- Javascript Ajax总结——跨域资源共享
XHR对象只能访问与包含它的页面位于同一个中的资源.这种安全策略可以预防某些恶意行为.CORS(Cross-Origin Resource Sharing,跨域资源共享)是W3C的一个工作草案,定义了 ...