Dubbo日志链路追踪TraceId选型
一、目的
开发排查系统问题用得最多的手段就是查看系统日志,但是在分布式环境下使用日志定位问题还是比较麻烦,需要借助 全链路追踪ID
把上下文串联起来,本文主要分享基于 Spring Boot
+ Dubbo
框架下 日志链路追踪ID
的实现方案选型思路。
目前大多数分布式追踪系统的思想模型都来自 Google's Dapper 论文
全链路追踪的核心思想:
- 为每条请求都单独分配一个唯一的
traceId
用来标识一条请求链路,该traceId
会贯穿整个请求处理过程的所有服务 - 每个服务/线程都拥有自己的
spanId
标识,代表请求的其中一段处理步骤 - 一个请求包含一个
traceId
和一个或多个spanId
日志全链路追踪 就是在每条系统日志里都添加显示
traceId
和spanId
信息
二、方案选型
2.1. 方案一(apm-toolkit)
这是 SkyWalking
的一个日志插件,通过这个插件可以在日志中输出
traceId
2.1.1. 使用方式
配置依赖,在 pom 文件中添加以下内容
<dependency>
<groupId>org.apache.skywalking</groupId>
<artifactId>apm-toolkit-logback-1.x</artifactId>
<version>8.1.0</version>
</dependency>
配置日志模板,修改 logback-spring.xml
文件中 Appender
元素的 encoder
为以下内容
<encoder class="ch.qos.logback.core.encoder.LayoutWrappingEncoder">
<layout class="org.apache.skywalking.apm.toolkit.log.logback.v1.x.TraceIdPatternLogbackLayout">
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%tid] [%thread] %-5level %logger{35} - %msg%n</pattern>
</layout>
</encoder>
ps: pattern 中的内容按需修改,其中的 %tid 就是相当于 traceId,默认 TID:N/A,当有请求调用时会生成并显示 traceId
2.1.2. 总结
优点:无需编码,业务无入侵,可与
SkyWalking
的图形化界面中使用该ID快速定位各种接口的调用关系。缺点:强耦合
SkyWalking
才能生效- 必须添加sk的
javaagent
- 必须部署
SkyWalking
服务端
- 必须添加sk的
2.2. 方案二(sleuth)
Sleuth
是 Spring Cloud
的组件之一,它为 Spring Cloud
实现了一种分布式追踪解决方案,兼容Zipkin,HTrace与其他日志追踪系统
2.2.1. 使用方式
配置父依赖,在 pom 文件中添加以下内容管理版本号
<dependencyManagement>
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-sleuth</artifactId>
<version>2.2.4.RELEASE</version>
<type>pom</type>
<scope>import</scope>
</dependency>
</dependencyManagement>
配置依赖,在 pom 文件中添加以下内容
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-sleuth</artifactId>
</dependency>
适配dubbo,要让 sleuth
支持 dubbo
框架,需要增加以下两个步骤:
首先添加 dubbo 的插件依赖
<dependency>
<groupId>io.zipkin.brave</groupId>
<artifactId>brave-instrumentation-dubbo-rpc</artifactId>
<version>5.12.6</version>
</dependency>
配置 dubbo 过滤器
dubbo:
provider:
filter: tracing
consumer:
filter: tracing
配置日志模板,修改 logback-spring.xml
文件中 Appender
元素的 encoder
为以下内容
<encoder>
<pattern>%d{yyyy-MM-dd HH:mm:ss.SSS} [%X{X-B3-TraceId},%X{X-B3-SpanId}] [%thread] %-5level %logger{35} - %msg%n</pattern>
<charset>utf-8</charset>
</encoder>
ps: pattern 中的内容按需修改,其中的 %X{X-B3-TraceId} 为 traceId,%X{X-B3-SpanId} 为 spanId
2.2.2. 总结
优点:业务无入侵,有丰富的插件进行扩展包括定时任务、MQ等。
缺点:
brave-instrumentation-dubbo-rpc
不支持dubbo 2.7.x
需要自行开发插件。
2.3. 方案三(自研)
2.3.1. 无入侵增加 traceId
使用 Logback
的 MDC
机制,在日志模板中加入 traceId
标识,取值方式为 %X{traceId}
- 系统入口(api网关)创建
traceId
的值 - 使用
MDC
保存traceId
- 修改
logback
配置文件模板格式添加标识%X{traceId}
MDC(Mapped Diagnostic Context,映射调试上下文)是 log4j 和 logback 提供的一种方便在多线程条件下记录日志的功能。
2.3.2. 跨线程传递
解决 traceId
跨线程丢失问题
由于 MDC
内部使用的是 ThreadLocal
所以只有本线程才有效,子线程和下游的服务 MDC
里的值会丢失;
需要解决 Spring
的各种线程池与异步方法的父子线程间传递。
解决思路:重写一个 MDCAdapter
使用阿里的 TransmittableThreadLocal
替换原来的 ThreadLocal
对象,解决各种线程池(ExecutorService
/ ForkJoinPool
/ TimerTask
)父子进程传值问题。
需要使用
TtlRunnable
和TtlCallable
来修饰传入线程池的Runnable
和Callable
2.3.3. 跨进程传递
解决 traceId
跨进程丢失问题
dubbo服务 使用 org.apache.dubbo.rpc.Filter
创建一个过滤器进行 traceId
传递
- 服务消费者:负责传递链路追踪 ID
- 服务提供者:负责接收 ID 并保存到
MDC
中
2.3.4. 总结
优点:业务无入侵,最小依赖,扩展灵活,适配性强。
缺点:需要自行实现,有大量的开发工作量。
三、方案总结
方案 | 开发工作量 | 可维护性 | 入侵性 | 性能 |
---|---|---|---|---|
apm-toolkit | 无 | 低 | 业务无入侵 | 中 |
sleuth | 中 | 中 | 业务无入侵 | 中 |
自研 | 高 | 高 | 业务无入侵 | 高 |
扫码关注有惊喜!
Dubbo日志链路追踪TraceId选型的更多相关文章
- SpringBoot之微服务日志链路追踪
SpringBoot之微服务日志链路追踪 简介 在微服务里,业务出现问题或者程序出的任何问题,都少不了查看日志,一般我们使用 ELK 相关的日志收集工具,服务多的情况下,业务问题也是有些难以排查,只能 ...
- 全链路追踪traceId,ThreadLocal与ExecutorService
关于全链路追踪traceId遇到线程池的问题,做过架构的估计都遇到过,现在以写个demo,总体思想就是获取父线程traceId,给子线程,子线程用完移除掉. mac上的chrome时不时崩溃,写了一大 ...
- 全链路追踪技术选型:pinpoint vs skywalking
目前分布式链路追踪系统基本都是根据谷歌的<Dapper大规模分布式系统的跟踪系统>这篇论文发展而来,主流的有zipkin,pinpoint,skywalking,cat,jaeger等. ...
- 应用SpringAOP及Tlog工具完成日志链路追踪、收集、持久化
一.痛点 目前我司各系统的日志管理比较原始,使用logback打日志到log文件,虽然有服务管理平台,但记录的日志也仅仅是前置机调用后台系统的出入参,当遇到问题时查日志较为麻烦. 登录VPN-打开服务 ...
- dubbo traceId透传实现日志链路追踪(基于Filter和RpcContext实现)
一.要解决什么问题: 使用elk的过程中发现如下问题: 1.无法准确定位一个请求经过了哪些服务 2.多个请求线程的日志交替打印,不利于查看按时间顺序查看一个请求的日志. 二.期望效果 能够查看一个请求 ...
- Dubbo 全链路追踪日志的实现
微服务架构的项目,一次请求可能会调用多个微服务,这样就会产生多个微服务的请求日志,当我们想要查看整个请求链路的日志时,就会变得困难,所幸的是我们有一些集中日志收集工具,比如很热门的ELK,我们需要把这 ...
- 从 1.5 开始搭建一个微服务框架——日志追踪 traceId
你好,我是悟空. 前言 最近在搭一个基础版的项目框架,基于 SpringCloud 微服务框架. 如果把 SpringCloud 这个框架当做 1,那么现在已经有的基础组件比如 swagger/log ...
- 基于SLF4J的MDC机制和Dubbo的Filter机制,实现分布式系统的日志全链路追踪
原文链接:基于SLF4J的MDC机制和Dubbo的Filter机制,实现分布式系统的日志全链路追踪 一.日志系统 1.日志框架 在每个系统应用中,我们都会使用日志系统,主要是为了记录必要的信息和方便排 ...
- 原理分析dubbo分布式应用中使用zipkin做链路追踪
zipkin是什么 Zipkin是一款开源的分布式实时数据追踪系统(Distributed Tracking System),基于 Google Dapper的论文设计而来,由 Twitter 公司开 ...
- 原理分析dubbo分布式应用中使用zipkin做链路追踪(转)
作者:@nele本文为作者原创,转载请注明出处:https://www.cnblogs.com/nele/p/10171794.html 目录 zipkin是什么为什么使用Zipkinzipkin架构 ...
随机推荐
- vue单个插槽
当子组件模板只有一个没有属性的插槽时,父组件传入的整个内容片段将插入到插槽所在的 DOM 位置,并替换掉插槽标签本身. # 子组件 <div> <h2>我是子组件的标题< ...
- 自动化搭建专属 AI 绘图服务
通义万相AIGC技术已经比较成熟,结合阿里云的计算和存储产品可以方便的搭建自己专属的 AI 绘图服务.例如<创意加速器:AI 绘画创作>这个解决方案,利用阿里自研的通义万相AIGC技术在 ...
- kettle从入门到精通 第二十一课 kettle Carte服务器
1.相关配置文件 jdbc.properties保存在simple-jndi目录下,这个文件用来存储JNDI连接对象的连接参数.Kettle可以用JNDI的方式来引用JDBC连接参数,如IP地址.用户 ...
- MyBatis 的好处是什么?
a.MyBatis 把 sql 语句从 Java 源程序中独立出来,放在单独的 XML 文件中编写,给程序的维护带来了很大便利. b.MyBatis 封装了底层 JDBC API 的调用细节,并能自动 ...
- 面试官:谈谈对SpringAI的理解?
Spring AI 已经发布了好长时间了,目前已经更新到 1.0 版本了,所以身为 Java 程序员的你,如果还对 Spring AI 一点都不了解的话,那就有点太落伍了. 言归正传,那什么是 Spr ...
- MySql 增、删、改、查数据库
前言 之前几天写了MySql 的GROUP BY 语句和 JOIN 语句,今天补一下创建数据库.表的语句.首先假设已经暗转好MySQL 数据库,然后创建数据库.表. 创建数据库 create data ...
- httpx的使用
urllib和requests库已经可以爬取大多数网站的数据,但对于一些强制使用HTTP/2.0协议访问,这时urllib和requests是无法爬取数据的,因为只支持HTTP/1.1,不支持HTTP ...
- Spring Boot入门实验
一. 实验目的和要求 1.掌握使用 IDEA 通过 Maven 和 Spring Initializr 的方式创建 Spring Boot 应用程序: 2.掌握 Maven 的工作原理: 3.了解 s ...
- 结构型模式(Structural Pattern)
模式介绍 结构型模式(Structural Pattern)的主要目的就是将不同的类和对象组合在一起,形成更大或者更复杂的结构体.该模式并不是简单地将这些类或对象摆放在一起,而是要提供它们之间的关联方 ...
- ServiceMesh、SideCar和Istio
Service Mesh简介 Service Mesh直译过来就是服务网格,而他的架构就是一个个微服务组成的网络. Sidecar简介 Service Mesh中的节点就是Sidecar节点. sid ...