题目

二分好题

首先用二分找最小的绝对值差,对于每个a[i]都两个方向扫一遍,先都改成差满足的形式,然后再找a[k]等于0的情况,发现如果a[k]要变成0,则从他到左右两个方向上必会有两个连续的区间也随之变化,

然后我们有一点K, 使K点=0时,可以分别向左和右影响区间的值。并且影响之后的值一定互为以0为首项,绝对值差为公差的等差数列。

如在在一段范围内K点影响到的值,以后的点一定不会受到影响,然后修改的次数就是该范围的面积,可以用该区间的值的和减去影响影响范围的等差数列。最后用双指针法求出每个K的左右区间端点,枚举第一个符合条件的最小K即可求出答案

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#define N 1001011
#define int long long
using namespace std;
int n, m, li, ri, ans, k, nk;
int data[N], a[N], def[N], sum[N], lef[N], rig[N];
bool check(int t)
{
int now = 0;
for (int i = 1; i <= n; i++)
a[i] = data[i];//a[i]是临时数组
for (int i = 2; i <= n; i++)
if (a[i] - a[i - 1] > t)//使a[i]减小一次,使a[i]满足条件,前后都扫一遍。
now += a[i] - a[i - 1] - t, a[i] = a[i - 1] + t;
if (now > m) return false;
for (int i = n - 1; i >= 1; i--)
if (a[i] - a[i + 1] > t)
now += a[i] - a[i + 1] - t, a[i] = a[i + 1] + t;
if (now > m) return false;
for (int i = 1; i <= n; i++)
sum[i] = sum[i - 1] + a[i];
int l = 1;
for (int r = 1; r <= n; r++)
{//找到左边最后一个受等差数列影响的
while (l < r && a[l] <= (r - l) * t) l++;//找左边最近的可以满足条件的位置,lef,rig存放的都是位置
lef[r] = l;
}
int r = n;
for (int l = n; l >= 1; l--)
{
while (r > l && a[r] <= (r - l) * t) r--;
rig[l] = r;
}
// for (int i = 1; i <= n; i++)
// printf("%lld %lld %lld\n", sum[i], lef[i], rig[i]);
for (int i = 1; i <= n; i++)
if ( (now+sum[rig[i]]-sum[lef[i]-1]-t*((i-lef[i])*(i-lef[i]+1)+(rig[i]-i)*(rig[i]-i+1))/2) <= m)//等差数列求和 + 原先的now <= m, 说明此时是最小的k
{nk = i;return true;}
return false;
}
signed main()
{
scanf("%lld%lld", &n, &m);
for (int i = 1; i <= n; i++)
scanf("%lld", &data[i]);
int mid = 0;
li = 0;
ri = 1e9;
while (li <= ri)
{
int mid = (li + ri) >> 1;
if (check(mid))
{
ans = mid;
ri = mid - 1;
}
else li = mid + 1;
}
printf("%lld %lld", nk, ans);
}
/*
16 7
8 7 6 5 5 5 3 5 5 6 6 7 7 9 7 5 5
*/

洛谷P3534 [POI2012] STU的更多相关文章

  1. 洛谷 P3539 [POI2012]ROZ-Fibonacci Representation 解题报告

    P3539 [POI2012]ROZ-Fibonacci Representation 题意:给一个数,问最少可以用几个斐波那契数加加减减凑出来 多组数据10 数据范围1e17 第一次瞬间yy出做法, ...

  2. 洛谷P3533 [POI2012]RAN-Rendezvous

    P3533 [POI2012]RAN-Rendezvous 题目描述 Byteasar is a ranger who works in the Arrow Cave - a famous rende ...

  3. BZOJ2801/洛谷P3544 [POI2012]BEZ-Minimalist Security(题目性质发掘+图的遍历+解不等式组)

    题面戳这 化下题面给的式子: \(z_u+z_v=p_u+p_v-b_{u,v}\) 发现\(p_u+p_v-b_{u,v}\)是确定的,所以只要确定了一个点\(i\)的权值\(x_i\),和它在同一 ...

  4. 洛谷P3538 [POI2012]OKR-A Horrible Poem [字符串hash]

    题目传送门 A Horrible Poem 题目描述 Bytie boy has to learn a fragment of a certain poem by heart. The poem, f ...

  5. 洛谷P3539 [POI2012] ROZ-Fibonacci Representation

    题目传送门 转载自:five20,转载请注明出处 本来看到这题,蒟蒻是真心没有把握的,还是five20大佬巨orz 首先由于斐波拉契数的前两项是1,1 ,所以易得对于任何整数必能写成多个斐波拉契数加减 ...

  6. 洛谷P3537 [POI2012]SZA-Cloakroom(背包)

    传送门 蠢了……还以为背包只能用来维护方案数呢……没想到背包这么神奇…… 我们用$dp[i]$表示当$c$的和为$i$时,所有的方案中使得最小的$b$最大时最小的$b$是多少 然后把所有的点按照$a$ ...

  7. 洛谷P3531 [POI2012]LIT-Letters

    题目描述 Little Johnny has a very long surname. Yet he is not the only such person in his milieu. As it ...

  8. 【洛谷3546_BZOJ2803】[POI2012]PRE-Prefixuffix(String Hash)

    Problem: 洛谷3546 Analysis: I gave up and saw other's solution when I had nearly thought of the method ...

  9. 洛谷 P1193 洛谷团队训练VS传统团队训练

    P1193 洛谷团队训练VS传统团队训练 题目背景 “在中学的信息学教育领域,洛谷无疑是一个相当受欢迎的辅助网站.同时有百余所学校正在通过洛谷进行信息学竞赛(以后简称OI)的教育.洛谷之所以如此受欢迎 ...

随机推荐

  1. 2019 网易java面试笔试题 (含面试题解析)

      本人5年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.网易等公司offer,岗位是Java后端开发,因为发展原因最终选择去了网易,入职一年时间了,也成为了面试官,之 ...

  2. Java自学-数组 复制数组

    Java 如何复制数组 数组的长度是不可变的,一旦分配好空间,是多长,就多长,不能增加也不能减少 步骤 1 : 复制数组 把一个数组的值,复制到另一个数组中 System.arraycopy(src, ...

  3. CSS揭秘(引言)

    1.标准的制定过程 a 人员结构:W3C会员公司的成员.特邀专家.W3C工作人员 b 尽管“CSS3”非常流行,但它实际上并没有在任何规范中定义过.它实际上是指一个非正式的集合,包括CSS规范第三版再 ...

  4. 1.Javascript实现Symbol

    // 当调用 Symbol 的时候,会采用以下步骤: //1. 如果使用 new ,就报错 //2. 如果 description 是 undefined,让 descString 为 undefin ...

  5. js计算hashcode

    String.prototype.hashCode = function(){ var hash = 0; for (var i = 0; i < this.length; i++) { var ...

  6. SG-UAP常用注解介绍

    注解基本介绍 Annotation(注解)是JDK5.0及以后版本引入的.它可以用于创建文档,跟踪代码中的依赖性,甚至执行基本编译时检查.注解是以‘@注解名’在代码中存在的,根据注解参数的个数,我们可 ...

  7. Github强制找回管理员账号密码

    步骤: 1. 登录Github所在的服务器,切换用户为git:su git 2. 进入Github的Rails控制台:gitlab-rails console production 3. 查看超级管理 ...

  8. oracle之PLSQL导出-导入-表-存储过程等操作--亲测好用

    1.背景 实际开发中考虑到安全,不会将生产库的数据和本地开发数据进行同步操作,而是采用导入导出sql语句的方式操作; 例如在开发环境写好的存储过程要更新到生产环境,那么就需要使用导出和导入功能. 2. ...

  9. 高阶函数概念以及map/filter/reduce

    什么样的函数叫高阶函数:map(func, *iterables) --> map object 条件:1.函数接受函数作为参数 2.函数的返回值中包含函数 num_l = [1,2,3,4,5 ...

  10. Java开发环境之Solr

    查看更多Java开发环境配置,请点击<Java开发环境配置大全> 玖章:Solr安装教程 1)官网下载Solr安装包 http://lucene.apache.org/solr/downl ...