Given a set of distinct integers, S, return all possible subsets.

Note:

  • Elements in a subset must be in non-descending order.
  • The solution set must not contain duplicate subsets.

For example,
If S = [1,2,3], a solution is:

[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]

这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定要是要用递归来做。这道题其实它的非递归解法相对来说更简单一点,下面我们先来看非递归的解法,由于题目要求子集合中数字的顺序是非降序排列的,所有我们需要预处理,先给输入数组排序,然后再进一步处理,最开始我在想的时候,是想按照子集的长度由少到多全部写出来,比如子集长度为0的就是空集,空集是任何集合的子集,满足条件,直接加入。下面长度为1的子集,直接一个循环加入所有数字,子集长度为2的话可以用两个循环,但是这种想法到后面就行不通了,因为循环的个数不能无限的增长,所以我们必须换一种思路。我们可以一位一位的网上叠加,比如对于题目中给的例子 [1,2,3] 来说,最开始是空集,那么我们现在要处理1,就在空集上加1,为 [1],现在我们有两个自己 [] 和 [1],下面我们来处理2,我们在之前的子集基础上,每个都加个2,可以分别得到 [2],[1, 2],那么现在所有的子集合为 [], [1], [2], [1, 2],同理处理3的情况可得 [3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了,代码如下:

解法一:

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res();
sort(S.begin(), S.end());
for (int i = ; i < S.size(); ++i) {
int size = res.size();
for (int j = ; j < size; ++j) {
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};

整个添加的顺序为:

[]
[1]
[2]
[1 2]
[3]
[1 3]
[2 3]
[1 2 3]

下面来看递归的解法,相当于一种深度优先搜索,参见网友 JustDoIt的博客,由于原集合每一个数字只有两种状态,要么存在,要么不存在,那么在构造子集时就有选择和不选择两种情况,所以可以构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,树的结构如下:

                        []
/ \
/ \
/ \
[] []
/ \ / \
/ \ / \
[ ] [] [] []
/ \ / \ / \ / \
[ ] [ ] [ ] [] [ ] [] [] []

解法二:

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
}
}
};

整个添加的顺序为:

[]
[1]
[1 2]
[1 2 3]
[1 3]
[2]
[2 3]
[3]

最后我们再来看一种解法,这种解法是 CareerCup 书上给的一种解法,想法也比较巧妙,把数组中所有的数分配一个状态,true 表示这个数在子集中出现,false 表示在子集中不出现,那么对于一个长度为n的数组,每个数字都有出现与不出现两种情况,所以共有 2中情况,那么我们把每种情况都转换出来就是子集了,我们还是用题目中的例子, [1 2 3] 这个数组共有8个子集,每个子集的序号的二进制表示,把是1的位对应原数组中的数字取出来就是一个子集,八种情况都取出来就是所有的子集了,参见代码如下:

  1 2 3 Subset
0 F F F []
1 F F T 3
2 F T F 2
3 F T T 23
4 T F F 1
5 T F T 13
6 T T F 12
7 T T T 123

解法三:

class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
sort(S.begin(), S.end());
int max = << S.size();
for (int k = ; k < max; ++k) {
vector<int> out = convertIntToSet(S, k);
res.push_back(out);
}
return res;
}
vector<int> convertIntToSet(vector<int> &S, int k) {
vector<int> sub;
int idx = ;
for (int i = k; i > ; i >>= ) {
if ((i & ) == ) {
sub.push_back(S[idx]);
}
++idx;
}
return sub;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/78

类似题目:

Subsets II

Generalized Abbreviation

Letter Case Permutation

参考资料:

https://leetcode.com/problems/subsets/

https://leetcode.com/problems/subsets/discuss/27288/My-solution-using-bit-manipulation

https://leetcode.com/problems/subsets/discuss/27278/C%2B%2B-RecursiveIterativeBit-Manipulation

https://leetcode.com/problems/subsets/discuss/27281/A-general-approach-to-backtracking-questions-in-Java-(Subsets-Permutations-Combination-Sum-Palindrome-Partitioning)

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] 78. Subsets 子集合的更多相关文章

  1. leetCode 78.Subsets (子集) 解题思路和方法

    Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a subset must ...

  2. [Leetcode 78]求子集 Subset

    [题目] Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The ...

  3. Leetcode#78 Subsets

    原题地址 有两种方法: 1. 对于序列S,其子集可以对应为一个二进制数,每一位对应集合中的某个数字,0代表不选,1代表选,比如S={1,2,3},则子集合就是3bit的所有二进制数. 所以,照着二进制 ...

  4. leetcode 78. Subsets 、90. Subsets II

    第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...

  5. Leetcode 78题-子集

    LeetCode 78 网上已经又很多解这题的博客了,在这只是我自己的解题思路和自己的代码: 先贴上原题: 我的思路: 我做题的喜欢在本子或别处做写几个示例,以此来总结规律:下图就是我从空数组到数组长 ...

  6. LeetCode 78 Subsets (所有子集)

    题目链接:https://leetcode.com/problems/subsets/#/description   给出一个数组,数组中的元素各不相同,找到该集合的所有子集(包括空集和本身) 举例说 ...

  7. [leetcode]78. Subsets数组子集

    Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solut ...

  8. LeetCode 78. Subsets(子集合)

    Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...

  9. [LeetCode] 78. Subsets tag: backtracking

    Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solut ...

随机推荐

  1. MyBatis 构造动态 SQL 语句

    以前看过一个本书叫<深入浅出 MFC >,台湾 C++ 大师写的一本书.在该书中写到这样一句话,“勿在浮沙筑高台”,这句话写的的确对啊.编程很多语言虽然相通,但是真正做还是需要认真的学习, ...

  2. 明解JAVA 第二章答案

    练习2-1 编译错误,无法运行. 练习2-2 package candle1220; class Nightwatch{ public static void main(String[] args) ...

  3. 应用层内存溢出/越界/重复释放等问题检查工具(ASan)

    https://github.com/google/sanitizers/wiki https://github.com/google/sanitizers/wiki/AddressSanitizer ...

  4. go 1.13 环境变量配置

    GO111MODULE="off"GOARCH="amd64"GOBIN=""GOCACHE="/Users/js/Library ...

  5. c#的文本格式化形式展示

    假设你使用的是新版本的的c#语法 c#的格式化形式有如下几种 string text = "Hello World!"; Console.WriteLine("Hello ...

  6. 5种IO模型、阻塞IO和非阻塞IO、同步IO和异步IO

    POSIX 同步IO.异步IO.阻塞IO.非阻塞IO,这几个词常见于各种各样的与网络相关的文章之中,往往不同上下文中它们的意思是不一样的,以致于我在很长一段时间对此感到困惑,所以想写一篇文章整理一下. ...

  7. STP生成树理解

    1.STP的功能 a. 防止二层环路    b .实现网络冗余备份 2.STP的选择机制 目的:  确定阻塞的端口 STP 交换机的角色: 根交换机,非根交换机 STP的选票:     BPDU Ro ...

  8. Web Api 模型绑定 二

    [https://docs.microsoft.com/zh-cn/aspnet/core/web-api/?view=aspnetcore-2.2] 1.ApiController属性使模型验证错误 ...

  9. 4 CVE-2012-0158 漏洞分析

    操作系统:Windows7 32位 专业版 Office:2003sp3_20120218.exe 工具:OD和IDA 1.漏洞的本质:程序编写时未对内存拷贝函数的长度参数进行足够严谨的验证,造成的堆 ...

  10. jQuery的$().each()与$.each()的区别

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...