[LeetCode] 78. Subsets 子集合
Given a set of distinct integers, S, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If S = [1,2,3]
, a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
这道求子集合的问题,由于其要列出所有结果,按照以往的经验,肯定要是要用递归来做。这道题其实它的非递归解法相对来说更简单一点,下面我们先来看非递归的解法,由于题目要求子集合中数字的顺序是非降序排列的,所有我们需要预处理,先给输入数组排序,然后再进一步处理,最开始我在想的时候,是想按照子集的长度由少到多全部写出来,比如子集长度为0的就是空集,空集是任何集合的子集,满足条件,直接加入。下面长度为1的子集,直接一个循环加入所有数字,子集长度为2的话可以用两个循环,但是这种想法到后面就行不通了,因为循环的个数不能无限的增长,所以我们必须换一种思路。我们可以一位一位的网上叠加,比如对于题目中给的例子 [1,2,3] 来说,最开始是空集,那么我们现在要处理1,就在空集上加1,为 [1],现在我们有两个自己 [] 和 [1],下面我们来处理2,我们在之前的子集基础上,每个都加个2,可以分别得到 [2],[1, 2],那么现在所有的子集合为 [], [1], [2], [1, 2],同理处理3的情况可得 [3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了,代码如下:
解法一:
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res();
sort(S.begin(), S.end());
for (int i = ; i < S.size(); ++i) {
int size = res.size();
for (int j = ; j < size; ++j) {
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};
整个添加的顺序为:
[]
[1]
[2]
[1 2]
[3]
[1 3]
[2 3]
[1 2 3]
下面来看递归的解法,相当于一种深度优先搜索,参见网友 JustDoIt的博客,由于原集合每一个数字只有两种状态,要么存在,要么不存在,那么在构造子集时就有选择和不选择两种情况,所以可以构造一棵二叉树,左子树表示选择该层处理的节点,右子树表示不选择,最终的叶节点就是所有子集合,树的结构如下:
[]
/ \
/ \
/ \
[] []
/ \ / \
/ \ / \
[ ] [] [] []
/ \ / \ / \ / \
[ ] [ ] [ ] [] [ ] [] [] []
解法二:
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
vector<int> out;
sort(S.begin(), S.end());
getSubsets(S, , out, res);
return res;
}
void getSubsets(vector<int> &S, int pos, vector<int> &out, vector<vector<int> > &res) {
res.push_back(out);
for (int i = pos; i < S.size(); ++i) {
out.push_back(S[i]);
getSubsets(S, i + , out, res);
out.pop_back();
}
}
};
整个添加的顺序为:
[]
[1]
[1 2]
[1 2 3]
[1 3]
[2]
[2 3]
[3]
最后我们再来看一种解法,这种解法是 CareerCup 书上给的一种解法,想法也比较巧妙,把数组中所有的数分配一个状态,true 表示这个数在子集中出现,false 表示在子集中不出现,那么对于一个长度为n的数组,每个数字都有出现与不出现两种情况,所以共有 2n 中情况,那么我们把每种情况都转换出来就是子集了,我们还是用题目中的例子, [1 2 3] 这个数组共有8个子集,每个子集的序号的二进制表示,把是1的位对应原数组中的数字取出来就是一个子集,八种情况都取出来就是所有的子集了,参见代码如下:
1 | 2 | 3 | Subset | |
0 | F | F | F | [] |
1 | F | F | T | 3 |
2 | F | T | F | 2 |
3 | F | T | T | 23 |
4 | T | F | F | 1 |
5 | T | F | T | 13 |
6 | T | T | F | 12 |
7 | T | T | T | 123 |
解法三:
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S) {
vector<vector<int> > res;
sort(S.begin(), S.end());
int max = << S.size();
for (int k = ; k < max; ++k) {
vector<int> out = convertIntToSet(S, k);
res.push_back(out);
}
return res;
}
vector<int> convertIntToSet(vector<int> &S, int k) {
vector<int> sub;
int idx = ;
for (int i = k; i > ; i >>= ) {
if ((i & ) == ) {
sub.push_back(S[idx]);
}
++idx;
}
return sub;
}
};
Github 同步地址:
https://github.com/grandyang/leetcode/issues/78
类似题目:
参考资料:
https://leetcode.com/problems/subsets/
https://leetcode.com/problems/subsets/discuss/27288/My-solution-using-bit-manipulation
https://leetcode.com/problems/subsets/discuss/27278/C%2B%2B-RecursiveIterativeBit-Manipulation
LeetCode All in One 题目讲解汇总(持续更新中...)
[LeetCode] 78. Subsets 子集合的更多相关文章
- leetCode 78.Subsets (子集) 解题思路和方法
Given a set of distinct integers, nums, return all possible subsets. Note: Elements in a subset must ...
- [Leetcode 78]求子集 Subset
[题目] Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The ...
- Leetcode#78 Subsets
原题地址 有两种方法: 1. 对于序列S,其子集可以对应为一个二进制数,每一位对应集合中的某个数字,0代表不选,1代表选,比如S={1,2,3},则子集合就是3bit的所有二进制数. 所以,照着二进制 ...
- leetcode 78. Subsets 、90. Subsets II
第一题是输入数组的数值不相同,第二题是输入数组的数值有相同的值,第二题在第一题的基础上需要过滤掉那些相同的数值. level代表的是需要进行选择的数值的位置. 78. Subsets 错误解法: cl ...
- Leetcode 78题-子集
LeetCode 78 网上已经又很多解这题的博客了,在这只是我自己的解题思路和自己的代码: 先贴上原题: 我的思路: 我做题的喜欢在本子或别处做写几个示例,以此来总结规律:下图就是我从空数组到数组长 ...
- LeetCode 78 Subsets (所有子集)
题目链接:https://leetcode.com/problems/subsets/#/description 给出一个数组,数组中的元素各不相同,找到该集合的所有子集(包括空集和本身) 举例说 ...
- [leetcode]78. Subsets数组子集
Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solut ...
- LeetCode 78. Subsets(子集合)
Given a set of distinct integers, nums, return all possible subsets. Note: The solution set must not ...
- [LeetCode] 78. Subsets tag: backtracking
Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The solut ...
随机推荐
- ubuntu18.04.2下编译openjdk9源码
最近在看<深入理解Java虚拟机 第二版>这本书,上面有关于自己编译OpenJDK源码的内容.自己根据书里的指示去操作,花了三天的时间,重装了好几次Ubuntu(还不知道快照这个功能,好傻 ...
- Spring源码分析之IOC的三种常见用法及源码实现(三)
上篇文章我们分析了AnnotationConfigApplicationContext的构造器里refresh方法里的invokeBeanFactoryPostProcessors,了解了@Compo ...
- C# Task,new Task().Start(),Task.Run();TTask.Factory.StartNew
1. Task task = new Task(() => { MultiplyMethod(a, b); }); task.Start(); 2. Task task = Task.Run(( ...
- C# in 参数修饰符
in 修饰符记录: 新版C# 新增加的 in 修饰符:保证发送到方法当中的数据不被更改(值类型),当in 修饰符用于引用类型时,可以改变变量的内容,单不能更改变量本身. 个人理解:in 修饰符传递的数 ...
- Docker中如何调试剖析.net core 的程序。
前言 现在.net core跨平台了,相信大部分人都把core的程序部署在了linux环境中,或者部署在了docker容器中,与之对应的,之前都是部署在windows环境中,在win中,我们可以用wi ...
- Java学习——枚举类
Java学习——枚举类 摘要:本文主要介绍了Java的枚举类. 部分内容来自以下博客: https://www.cnblogs.com/sister/p/4700702.html https://bl ...
- DevExpress的TreeList的常用属性设置以及常用事件
场景 Winform控件-DevExpress18下载安装注册以及在VS中使用: https://blog.csdn.net/BADAO_LIUMANG_QIZHI/article/details/1 ...
- warning: Unexpected unnamed function (func-names)
warning: Unexpected unnamed function (func-names) 看到这个提示基本是就是说你的函数不能是匿名函数,最好可以起一个名字,然后你增加一个函数名称就好了 R ...
- Context都没弄明白,还怎么做Android开发
转载:https://www.jianshu.com/p/94e0f9ab3f1d Activity mActivity =new Activity() 作为Android开发者,不知道你有没有思考过 ...
- Linux环境oracle导库步骤
1.xshell登录linux 2.切换oracle用户 su - oracle 3.创建directory仓库目录,存放数据库dmp文件 //DIRFILE_zy 表示目录名称 后面的是实际地址 c ...