原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/

题目:

There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones.

move consists of merging exactly K consecutive piles into one pile, and the cost of this move is equal to the total number of stones in these K piles.

Find the minimum cost to merge all piles of stones into one pile.  If it is impossible, return -1.

Example 1:

Input: stones = [3,2,4,1], K = 2
Output: 20
Explanation:
We start with [3, 2, 4, 1].
We merge [3, 2] for a cost of 5, and we are left with [5, 4, 1].
We merge [4, 1] for a cost of 5, and we are left with [5, 5].
We merge [5, 5] for a cost of 10, and we are left with [10].
The total cost was 20, and this is the minimum possible.

Example 2:

Input: stones = [3,2,4,1], K = 3
Output: -1
Explanation: After any merge operation, there are 2 piles left, and we can't merge anymore. So the task is impossible.

Example 3:

Input: stones = [3,5,1,2,6], K = 3
Output: 25
Explanation:
We start with [3, 5, 1, 2, 6].
We merge [5, 1, 2] for a cost of 8, and we are left with [3, 8, 6].
We merge [3, 8, 6] for a cost of 17, and we are left with [17].
The total cost was 25, and this is the minimum possible.

Note:

  • 1 <= stones.length <= 30
  • 2 <= K <= 30
  • 1 <= stones[i] <= 100

题解:

Each merge step, piles number decreased by K-1. Eventually there is only 1 pile. n - mergeTimes * (K-1) == 1. megeTimes = (n-1)/(K-1). If it is not divisable, then it could not merge into one pile, thus return -1.

Let dp[i][j] denotes minimum cost to merge [i, j] inclusively.

m = i, i+1, ... j-1. Let i to m be one pile, and m+1 to j to certain piles. dp[i][j] = min(dp[i][m] + dp[m+1][j]).

In order to make i to m as one pile, [i,m] inclusive length is multiple of K. m moves K-1 each step.

If [i, j] is multiple of K, then dp[i][j] could be merged into one pile. dp[i][j] += preSum[j+1] - preSum[i].

return dp[0][n-1], minimum cost to merge [0, n-1] inclusively.

Time Complexity: O(n^3/K).

Space: O(n^2).

AC Java:

 class Solution {
public int mergeStones(int[] stones, int K) {
int n = stones.length;
if((n-1)%(K-1) != 0){
return -1;
} int [] preSum = new int[n+1];
for(int i = 1; i<=n; i++){
preSum[i] = preSum[i-1] + stones[i-1];
} int [][] dp = new int[n][n];
for(int size = 2; size<=n; size++){
for(int i = 0; i<=n-size; i++){
int j = i+size-1;
dp[i][j] = Integer.MAX_VALUE; for(int m = i; m<j; m += K-1){
dp[i][j] = Math.min(dp[i][j], dp[i][m]+dp[m+1][j]);
} if((size-1) % (K-1) == 0){
dp[i][j] += preSum[j+1] - preSum[i];
}
}
} return dp[0][n-1];
}
}

类似Burst Balloons.

LeetCode 1000. Minimum Cost to Merge Stones的更多相关文章

  1. 1000. Minimum Cost to Merge Stones

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  2. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  3. [Swift]LeetCode1000. 合并石头的最低成本 | Minimum Cost to Merge Stones

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  4. 动态规划-Minimum Cost to Merge Stones

    2019-07-07 15:48:46 问题描述: 问题求解: 最初看到这个问题的时候第一反应就是这个题目和打破气球的题目很类似. 但是我尝试了使用dp将问题直接转为直接合并到一个堆问题复杂度迅速提高 ...

  5. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  6. LeetCode 1130. Minimum Cost Tree From Leaf Values

    原题链接在这里:https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/ 题目: Given an array arr of ...

  7. [LeetCode] 857. Minimum Cost to Hire K Workers 雇佣K名工人的最低成本

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  8. [LeetCode] 857. Minimum Cost to Hire K Workers 雇K个工人的最小花费

    There are N workers.  The i-th worker has a quality[i] and a minimum wage expectation wage[i]. Now w ...

  9. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

随机推荐

  1. celery 分布式异步任务框架(celery简单使用、celery多任务结构、celery定时任务、celery计划任务、celery在Django项目中使用Python脚本调用Django环境)

    一.celery简介: Celery 是一个强大的 分布式任务队列 的 异步处理框架,它可以让任务的执行完全脱离主程序,甚至可以被分配到其他主机上运行.我们通常使用它来实现异步任务(async tas ...

  2. Python 基础 常用运算符

    Python 基础 常用运算符 计算机可以进行的运算有很多种,可不只加减乘除这么简单,运算按种类可分为算术运算.比较运算.逻辑运算.赋值运算.成员运算.身份运算.位运算. 今天我们暂只学习 算术运算. ...

  3. PB 获取或操作数据窗口语句的方法

    1.setsqlselect用法: ls_select=getsqlselect    //通过getsqlselect取得当前数据窗口的查询语句 ls_where="  "    ...

  4. yii2 AppAsset.php 和 assetManager 组件

    01) 背景:Yii2中使用了 AdminLTE 3.0.0  后框架自带的bootstrap.css 与 admin样式有冲突,需要去掉 bootstrap.css 在 backend/config ...

  5. linux端口映射

    参考文章: http://jingyan.baidu.com/article/ed15cb1b2a332e1be36981ed.html http://www.myhack58.com/Article ...

  6. yii框架定时任务的操作

    在项目根目录里找到console(操作台,控制台)文件夹,在console文件夹里建一个TestController文件,如图所示: 文件内部写如下内容: 切记该文件继承的Controller一定是 ...

  7. 2019 朗玛信息java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.朗玛信息等公司offer,岗位是Java后端开发,最终选择去了朗玛信息. 面试了很多家公司,感觉大部分公司考察的点 ...

  8. ssm(spring+springmvc+mybatis)整合之环境配置

    1-1.导包 导入SpringMVC.Spring.MyBatis.mybatis-spring.mysql.druid.json.上传和下载.验证的包 1-2.创建并配置web.xml文件 配置sp ...

  9. chrome浏览页面常用快捷键

    1.chrome浏览页面常用快捷键 Ctrl+N 打开新窗口. Ctrl+T 打开新标签页. Ctrl+W关闭当前标签 Ctrl + F4 关闭chrome浏览器 Ctrl+Tab 或 Ctrl+Pg ...

  10. 最佳移动端h5自适应rem适配方案

    一.利用lib-flexible.postcss-plugin-px2rem插件 进行移动端rem适配. 1.第一 引入lib-flexible . 安装lib-flexible: npm i lib ...