Classification and Decision Trees
分类和决策树(DT)。
决策树是预测建模机器学习的一种重要算法。
决策树模型的表示是二叉树。就是算法和数据结构中的二叉树,没什么特别的。每个节点表示一个单独的输入变量(x)和该变量上的左右孩子(假设变量为数值)。
树的叶节点包含一个输出变量(y),用于进行预测。通过遍历树,直到到达叶节点并输出叶节点的类值,就可以做出预测。
树的学习速度很快,预测的速度也很快。它们通常也适用于广泛的问题,不需要对数据进行任何特别的准备。
决策树有很高的方差,并且可以在使用时产生更准确的预测。
特点及应用
决策树的特点是它总是在沿着特征做切分。随着层层递进,这个划分会越来越细。
虽然生成的树不容易给用户看,但是数据分析的时候,通过观察树的上层结构,能够对分类器的核心思路有一个直观的感受。
举个简单的例子,当我们预测一个孩子的身高的时候,决策树的第一层可能是这个孩子的性别。男生走左边的树进行进一步预测,女生则走右边的树。这就说明性别对身高有很强的影响。
因为DT能够生成清晰的基于特征(feature)选择不同预测结果的树状结构,数据分析师希望更好的理解手上的数据的时候往往可以使用决策树。
同时它也是相对容易被攻击的分类器。这里的攻击是指人为的改变一些特征,使得分类器判断错误。常见于垃圾邮件躲避检测中。因为决策树最终在底层判断是基于单个条件的,攻击者往往只需要改变很少的特征就可以逃过监测。
受限于它的简单性,决策树更大的用处是作为一些更有用的算法的基石。
优点:
1.概念简单,计算复杂度不高,可解释性强,输出结果易于理解;
2.数据的准备工作简单, 能够同时处理数据型和常规型属性,其他的技术往往要求数据属性的单一。
3.对中间值得确实不敏感,比较适合处理有缺失属性值的样本,能够处理不相关的特征;
4.应用范围广,可以对很多属性的数据集构造决策树,可扩展性强。决策树可以用于不熟悉的数据集合,并从中提取出一些列规则 这一点强于KNN。
缺点:
1.容易出现过拟合;
2.对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。
3. 信息缺失时处理起来比较困难。 忽略数据集中属性之间的相关性。
Classification and Decision Trees的更多相关文章
- Logistic Regression vs Decision Trees vs SVM: Part II
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...
- Logistic Regression Vs Decision Trees Vs SVM: Part I
Classification is one of the major problems that we solve while working on standard business problem ...
- Machine Learning Methods: Decision trees and forests
Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics ...
- 壁虎书6 Decision Trees
Decision Trees are versatile Machine Learning algorithms that can perform both classification and re ...
- Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...
- 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...
- 机器学习算法 --- Decision Trees Algorithms
一.Decision Trees Agorithms的简介 决策树算法(Decision Trees Agorithms),是如今最流行的机器学习算法之一,它即能做分类又做回归(不像之前介绍的其他学习 ...
- Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)
https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...
- CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
随机推荐
- Deleaker – 内存泄漏猎人(RAD Studio 的附加组件)
程序员面临(并希望我们意识到)的常见问题之一是内存泄漏或任何其他类型的资源泄漏.例如,Windows限制了进程一次可以分配的GDI或USER32对象的数量.当事情走错路时,您可能希望拥有一些工具来帮助 ...
- 2019-7-18 collections,time,random,os,sys,序列化模块(json和pickle)应用
一.collections模块 1.具名元组:namedtuple(生成可以使用名字来访问元素的tuple) 表示坐标点x为1 y为2的坐标 注意:第二个参数可以传可迭代对象,也可以传字符串,但是字 ...
- HTML登录注册页面简单实现
github:传送门 , 码云: 传送门 效果参考: 登录页面,注册页面 使用了bootstrap,jQuery. 后端使用的CGI处理表单,存入MySQL数据库.(之后更新) 登录页面源码 < ...
- 74HC573锁存器应用(附英文手册)
锁存器(LATCH)概念 锁存器(Latch)是一种对脉冲电平敏感的存储单元电路,它们可以在特定输入脉冲电平作用下改变状态. 锁存,就是把信号暂存以维持某种电平状态. 锁存器作用: 缓存 完成高速的控 ...
- PB 点击标题行排序和双击打开编辑页面共存不冲突的方法
根据doubleclicked() 事件的参数 row 进行判断 大于0才进入编辑页面(不能用getrow()事件获取行id,双击标题行获取的是1) if row>0 then event ue ...
- Kibana访问报错
浏览器访问提示:Kibana server is not ready yet 查看日志如下 {"type":"log","@timestamp&quo ...
- Java 阿拉伯数字转换为中文大写数字
Java 阿拉伯数字转换为中文大写数字 /** * <html> * <body> * <P> Copyright 1994 JsonInternational&l ...
- 矩量母函数(Moment Generating Function,mgf,又称:动差生成函数)
在统计学中,矩又被称为动差(Moment).矩量母函数(Moment Generating Function,简称mgf)又被称为动差生成函数. 称exp(tξ)的数学期望为随机变量ξ的矩量母函数,记 ...
- MongoDB和Java(1):Linux下的MongoDB安装
最近花了一些时间学习了下MongoDB数据库,感觉还是比较全面系统的,涉及了软件安装.客户端操作.安全认证.副本集和分布式集群搭建,以及使用Spring Data连接MongoDB进行数据操作,收获很 ...
- 30个关于Shell脚本的经典案例(中)
本文目录 11.iptables自动屏蔽访问网站频繁的IP 12.判断用户输入的是否为IP地址 13.判断用户输入的是否为数字 14.给定目录找出包含关键字的文件 15.监控目录,将新创建的文件名追加 ...