Classification and Decision Trees
分类和决策树(DT)。
决策树是预测建模机器学习的一种重要算法。
决策树模型的表示是二叉树。就是算法和数据结构中的二叉树,没什么特别的。每个节点表示一个单独的输入变量(x)和该变量上的左右孩子(假设变量为数值)。
树的叶节点包含一个输出变量(y),用于进行预测。通过遍历树,直到到达叶节点并输出叶节点的类值,就可以做出预测。
树的学习速度很快,预测的速度也很快。它们通常也适用于广泛的问题,不需要对数据进行任何特别的准备。
决策树有很高的方差,并且可以在使用时产生更准确的预测。
特点及应用
决策树的特点是它总是在沿着特征做切分。随着层层递进,这个划分会越来越细。
虽然生成的树不容易给用户看,但是数据分析的时候,通过观察树的上层结构,能够对分类器的核心思路有一个直观的感受。
举个简单的例子,当我们预测一个孩子的身高的时候,决策树的第一层可能是这个孩子的性别。男生走左边的树进行进一步预测,女生则走右边的树。这就说明性别对身高有很强的影响。
因为DT能够生成清晰的基于特征(feature)选择不同预测结果的树状结构,数据分析师希望更好的理解手上的数据的时候往往可以使用决策树。
同时它也是相对容易被攻击的分类器。这里的攻击是指人为的改变一些特征,使得分类器判断错误。常见于垃圾邮件躲避检测中。因为决策树最终在底层判断是基于单个条件的,攻击者往往只需要改变很少的特征就可以逃过监测。
受限于它的简单性,决策树更大的用处是作为一些更有用的算法的基石。
优点:
1.概念简单,计算复杂度不高,可解释性强,输出结果易于理解;
2.数据的准备工作简单, 能够同时处理数据型和常规型属性,其他的技术往往要求数据属性的单一。
3.对中间值得确实不敏感,比较适合处理有缺失属性值的样本,能够处理不相关的特征;
4.应用范围广,可以对很多属性的数据集构造决策树,可扩展性强。决策树可以用于不熟悉的数据集合,并从中提取出一些列规则 这一点强于KNN。
缺点:
1.容易出现过拟合;
2.对于那些各类别样本数量不一致的数据,在决策树当中,信息增益的结果偏向于那些具有更多数值的特征。
3. 信息缺失时处理起来比较困难。 忽略数据集中属性之间的相关性。
Classification and Decision Trees的更多相关文章
- Logistic Regression vs Decision Trees vs SVM: Part II
This is the 2nd part of the series. Read the first part here: Logistic Regression Vs Decision Trees ...
- Logistic Regression Vs Decision Trees Vs SVM: Part I
Classification is one of the major problems that we solve while working on standard business problem ...
- Machine Learning Methods: Decision trees and forests
Machine Learning Methods: Decision trees and forests This post contains our crib notes on the basics ...
- 壁虎书6 Decision Trees
Decision Trees are versatile Machine Learning algorithms that can perform both classification and re ...
- Gradient Boosting, Decision Trees and XGBoost with CUDA ——GPU加速5-6倍
xgboost的可以参考:https://xgboost.readthedocs.io/en/latest/gpu/index.html 整体看加速5-6倍的样子. Gradient Boosting ...
- 机器学习算法 --- Pruning (decision trees) & Random Forest Algorithm
一.Table for Content 在之前的文章中我们介绍了Decision Trees Agorithms,然而这个学习算法有一个很大的弊端,就是很容易出现Overfitting,为了解决此问题 ...
- 机器学习算法 --- Decision Trees Algorithms
一.Decision Trees Agorithms的简介 决策树算法(Decision Trees Agorithms),是如今最流行的机器学习算法之一,它即能做分类又做回归(不像之前介绍的其他学习 ...
- Facebook Gradient boosting 梯度提升 separate the positive and negative labeled points using a single line 梯度提升决策树 Gradient Boosted Decision Trees (GBDT)
https://www.quora.com/Why-do-people-use-gradient-boosted-decision-trees-to-do-feature-transform Why ...
- CatBoost使用GPU实现决策树的快速梯度提升CatBoost Enables Fast Gradient Boosting on Decision Trees Using GPUs
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&ut ...
随机推荐
- PHP下载远程图片到本地的几种方法总结(tp5.1)
1.CURL 2.使用file_get_contents 3.使用fopen 参考链接:https://www.jb51.net/article/110615.htm
- Vue框架(三)——Vue项目搭建和项目目录介绍、组件、路由
Vue项目环境搭建 1) 安装node,在官网下载好,然后在本地安装 官网下载安装包,傻瓜式安装:https://nodejs.org/zh-cn/ 2) 换源安装cnpm >: npm ins ...
- Linux基础(03)gdb调试
1. 安装GDB增强工具 (gef) * GDB的版本大于7.7 * wget -q -O- https://github.com/hugsy/gef/raw/master/scripts/gef.s ...
- 原!!Spring redis的Scan的坑,慎用!
线上发现有机器,在发生某块业务大量请求时,后面就没有日志了,查看线程状态,如图1,发现很多线程被阻塞了,查看代码发现,用到了scan,如图2,百度之后,发现该操作不会自动释放redis连接,导致red ...
- 记一次线上问题排查:C#可选参数的坑
线上报了大量异常,错误信息为:找不到XX方法实现 代码调用关系是: 查看代码历史记录,发现最近上线前对 GetUserDottedLineSuperiors 方法做过修改,增加了一个可选参数. 跟相关 ...
- sublime中Vue高亮插件安装
1.准备语法高亮插件vue-syntax-highlight. 下载地址: https://github.com/vuejs/vue-syntax-highlight 下载页面并下载: 解开压缩包vu ...
- ES6 新增基本数据类型Symbol
ES6 增加了一个新的基本数据类型 symbol. 不过,和其他基本数据类型相比,它有点与众不同,因为它没有字面量的表现形式,而且创建的方式也有点奇怪,只能通过调用全局函数Symbol()来完成. l ...
- vue中监听页面是否有回车键按下
需求:当我在登录页面输入密码和账号后,按下回车键实现登录 mounted(){ let _this = this document.onkeydown = function(e) { if(e.key ...
- jquery实现倒计时
<html> <head> <meta charset="utf-8"/> <title>jquery实现倒计时</title ...
- Windows10简单启动项目添加方法
1,cmd输入 shell:startup 打卡启动项文件夹 2,将需要启动执行的项目的快捷方式放入此文件夹 3,重新启动系统就可以知道效果了