一起来学演化计算-matlab优化函数fminunc

觉得有用的话,欢迎一起讨论相互学习~Follow Me

fminunc

  • 求无约束多变量函数的最小值
  • 非线性编程求解器
  • 找到指定问题的最小值,\(min_{x}f(x)\) ,其中f(x)是一个返回一个标量的函数,x是一个向量或者矩阵。

语法

  • x = fminunc(fun,x0)
  • x = fminunc(fun,x0,options)
  • x = fminunc(problem)
  • [x,fval] = fminunc( ___ )
  • [x,fval,exitflag,output] = fminunc( __ )
  • [x,fval,exitflag,output,grad,hessian] = fminunc( ___ )

表示和描述

  • x = fminunc(fun,x0)从x0点开始,尝试找到fun中描述的函数的一个局部最小x。点x0可以是标量、向量或矩阵。

  • Note fminunc适用于无约束的非线性问题。如果您的问题有约束,通常使用fmincon。参见优化决策表。

  • x = fminunc(fun,x0,options)通过选项中指定的优化选项最小化乐趣。使用 optimoptions 设置这些选项。

  • x = fminunc(problem)找到问题的最小值,其中问题是 Input Arguments 中描述的结构。

  • [x,fval] = fminunc( __ ),对于任何语法,返回目标函数在解x处的值

  • [x,fval,exitflag,output] = fminunc()另外返回一个描述fminunc退出条件的exitflag值,以及一个包含优化过程信息的结构输出

  • [x,fval,exitflag,output,grad,hessian] = fminunc( __ )另外返回:

    • 梯度-解x处的梯度。
    • Hessian- 解决方案x的x1和x2的偏导。
    • \[Hessian=H _ { i j } = \frac { \partial ^ { 2 } f } { \partial x _ { i } \partial x _ { j } }
      \]

示例

最小化一个多项式

求函数梯度

使用问题结构

  • 此和上一节的内容相同,但是使用了问题结构的模型,即为problem设置options,x0,objective,solver然后使用fminunc函数优化问题。
problem.options = options;
problem.x0 = [-1,2];
problem.objective = @rosenbrockwithgrad;
problem.solver = 'fminunc';

获取最佳的目标函数值

  • 没看出和第一个例子有什么区别,但是我感觉第一个函数是能够计算得到梯度的,而这个函数则不能够直接计算出梯度信息

检查解决方案过程

  • 可以输出优化过程和各种参数

输入参数

Fun 需要被优化的函数

X0 初始点

选项

所有算法

  • 寻优算法
  • 如果函数能够提供梯度则选择"trust-region"选项,否则选择 拟牛顿法 -"quasi-newton"

  • 梯度检查

  • 显示

  • 有限差分类型和步长

  • 函数终止

  • 迭代调用其他函数

  • 画出结果

  • 自定义梯度函数

  • TypicalX

trust-region算法

quasi-Newton

Problem

输出参数

matlab优化函数fminunc的更多相关文章

  1. Matlab基础

    基本运算: 一,矩阵的生成 clc ; clear all; close all; 1.直接输入 A = [ 1 ,2 ,3,4;2,3,4,5;3,4,5,6] A = 1 2 3 4 2 3 4 ...

  2. 机器学习作业(二)逻辑回归——Python(numpy)实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np imp ...

  3. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

  4. matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary

    画decision boundary(直线) %% ============= Part 3: Optimizing using fminunc =============% In this exer ...

  5. MATLAB命令大全

    一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos ...

  6. 在数学建模中学MATLAB

    为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137 ...

  7. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  8. [转] MATLAB快捷键

    原文地址:MATLAB快捷键大全 (转载)作者:掷地有声 一.索引混排版 备注:删除了如F1(帮助)等类型的常见快捷命令 SHIFT+DELETE永久删除 DELETE删除 ALT+ENTER属性 A ...

  9. MATLAB中如何使用遗传算法

    matlab有遗传算法工具箱. 核心函数:   (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成 ...

随机推荐

  1. final修饰的变量引用不能变还是对象不可变

    两种情况:如果是基本数据类型,被final修饰的变量一旦初始化就不能改变:如果是引用数据类型的变量,初始化之后不能指向另外一个对象. 基本数据类型: package cn.yqg.day2; publ ...

  2. mini_frame(web框架)

    文件目录: dynamic中:框架 static:css,jss静态文件 teplates:模板 web_server.conf: 配置文件 web_server.py: 主程序 run.sh:运行脚 ...

  3. 接口-DBLINK初尝试

    需求: 将寿险核心库中的黑名单数据提取到团险核心中,供团险核心使用,并且在核心前端页面需配置对应的菜单,提供相应的按钮,该接口采用dblink的方式进行提取. 通过本地数据库配置dblink访问远程数 ...

  4. CSP2019 D2T2 划分 (单调队列DP)

    题目 洛谷传送门 题解 就是这道题搞我退役考场上写了n^2 64分,结果爆成8-12分.直接GG. 考场上想到正解的写法被自己否决了 题解传送门(看到这道送我退役的题目⑧太想写题解) 六行O(n2)O ...

  5. Kibana<6.6.0代码执行漏洞复现

    更多内容,欢迎关注微信公众号:信Yang安全,期待与您相遇. 使用docker快速部署环境docker pull kibana:6.5.4docker pull elasticsearch:6.5.4 ...

  6. 洛谷P1706全排列问题

     P1706 全排列问题 题目描述 输出自然数1到n所有不重复的排列,即n的全排列,要求所产生的任一数字序列中不允许出现重复的数字. 输入输出格式 输入格式: n(1≤n≤9) 输出格式: 由1-n组 ...

  7. 下载svn

    http://subversion.apache.org/download.cgi?update=201708081800 Windows下载zip,其他系统的下载tar.gz

  8. SweetAlert 2 全网最详细的使用方法

    官网链接 SweetAlert2 官网链接 准备阶段 CDN js 如果该 链接 时间久远了 , 可以在官网去找找最新的 可以把 js 复制出来 自己新建一个文件 然后 引用到 html 中 1. 带 ...

  9. 浅谈python闭包及装饰器

    1. 什么是闭包: 闭包 是指有权访问另一个函数作用域中变量的函数,创建闭包的最常见的方式就是在一个函数内创建另一个函数,通过另一个函数访问这个函数的局部变量,利用闭包可以突破作用链域,将函数内部的变 ...

  10. DEFINE_CG_MOTION宏【注释版】

    线速度是通过物体上的x方向的力平衡达到的.表达形式为: 此处v为速度,F为外力,m为质量.使用显示欧拉格式表达t时刻速度为: 源代码: #include "udf.h" stati ...