02-人脸识别-基于MTCNN,框选人脸区域-detect_face
(本系列随笔持续更新)
这部分代码是基于参考中的链接,修改后适用于TensorFlow1.6.0版本的代码。由于TensorFlow的频繁更新,所以不一定支持后续新或者就版本,特此说明。
程序的最初版,来自“山人7” [参考1,参考2],但是在新的TensorFlow下面不能直接运行。
修改后版本,来自ShyBigBoy,[参考3,参考4],可以在TensorFlow1.6.0上运行。
代码:detect_face.py
""" Tensorflow implementation of the face detection / alignment algorithm found at
https://github.com/kpzhang93/MTCNN_face_detection_alignment
"""
# MIT License
#
# Copyright (c) 2016 David Sandberg
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE. from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from six import string_types, iteritems import numpy as np
import tensorflow as tf
#from math import floor
import cv2
import os def layer(op):
"""Decorator for composable network layers.""" def layer_decorated(self, *args, **kwargs):
# Automatically set a name if not provided.
name = kwargs.setdefault('name', self.get_unique_name(op.__name__))
# Figure out the layer inputs.
if len(self.terminals) == 0:
raise RuntimeError('No input variables found for layer %s.' % name)
elif len(self.terminals) == 1:
layer_input = self.terminals[0]
else:
layer_input = list(self.terminals)
# Perform the operation and get the output.
layer_output = op(self, layer_input, *args, **kwargs)
# Add to layer LUT.
self.layers[name] = layer_output
# This output is now the input for the next layer.
self.feed(layer_output)
# Return self for chained calls.
return self return layer_decorated class Network(object): def __init__(self, inputs, trainable=True):
# The input nodes for this network
self.inputs = inputs
# The current list of terminal nodes
self.terminals = []
# Mapping from layer names to layers
self.layers = dict(inputs)
# If true, the resulting variables are set as trainable
self.trainable = trainable self.setup() def setup(self):
"""Construct the network. """
raise NotImplementedError('Must be implemented by the subclass.') def load(self, data_path, session, ignore_missing=False):
"""Load network weights.
data_path: The path to the numpy-serialized network weights
session: The current TensorFlow session
ignore_missing: If true, serialized weights for missing layers are ignored.
"""
data_dict = np.load(data_path, encoding='latin1').item() #pylint: disable=no-member for op_name in data_dict:
with tf.variable_scope(op_name, reuse=True):
for param_name, data in iteritems(data_dict[op_name]):
try:
var = tf.get_variable(param_name)
session.run(var.assign(data))
except ValueError:
if not ignore_missing:
raise def feed(self, *args):
"""Set the input(s) for the next operation by replacing the terminal nodes.
The arguments can be either layer names or the actual layers.
"""
assert len(args) != 0
self.terminals = []
for fed_layer in args:
if isinstance(fed_layer, string_types):
try:
fed_layer = self.layers[fed_layer]
except KeyError:
raise KeyError('Unknown layer name fed: %s' % fed_layer)
self.terminals.append(fed_layer)
return self def get_output(self):
"""Returns the current network output."""
return self.terminals[-1] def get_unique_name(self, prefix):
"""Returns an index-suffixed unique name for the given prefix.
This is used for auto-generating layer names based on the type-prefix.
"""
ident = sum(t.startswith(prefix) for t, _ in self.layers.items()) + 1
return '%s_%d' % (prefix, ident) def make_var(self, name, shape):
"""Creates a new TensorFlow variable."""
return tf.get_variable(name, shape, trainable=self.trainable) def validate_padding(self, padding):
"""Verifies that the padding is one of the supported ones."""
assert padding in ('SAME', 'VALID') @layer
def conv(self,
inp,
k_h,
k_w,
c_o,
s_h,
s_w,
name,
relu=True,
padding='SAME',
group=1,
biased=True):
# Verify that the padding is acceptable
self.validate_padding(padding)
# Get the number of channels in the input
c_i = int(inp.get_shape()[-1])
# Verify that the grouping parameter is valid
assert c_i % group == 0
assert c_o % group == 0
# Convolution for a given input and kernel
convolve = lambda i, k: tf.nn.conv2d(i, k, [1, s_h, s_w, 1], padding=padding)
with tf.variable_scope(name) as scope:
kernel = self.make_var('weights', shape=[k_h, k_w, c_i // group, c_o])
# This is the common-case. Convolve the input without any further complications.
output = convolve(inp, kernel)
# Add the biases
if biased:
biases = self.make_var('biases', [c_o])
output = tf.nn.bias_add(output, biases)
if relu:
# ReLU non-linearity
output = tf.nn.relu(output, name=scope.name)
return output @layer
def prelu(self, inp, name):
with tf.variable_scope(name):
i = int(inp.get_shape()[-1])
alpha = self.make_var('alpha', shape=(i,))
output = tf.nn.relu(inp) + tf.multiply(alpha, -tf.nn.relu(-inp))
return output @layer
def max_pool(self, inp, k_h, k_w, s_h, s_w, name, padding='SAME'):
self.validate_padding(padding)
return tf.nn.max_pool(inp,
ksize=[1, k_h, k_w, 1],
strides=[1, s_h, s_w, 1],
padding=padding,
name=name) @layer
def fc(self, inp, num_out, name, relu=True):
with tf.variable_scope(name):
input_shape = inp.get_shape()
if input_shape.ndims == 4:
# The input is spatial. Vectorize it first.
dim = 1
for d in input_shape[1:].as_list():
dim *= int(d)
feed_in = tf.reshape(inp, [-1, dim])
else:
feed_in, dim = (inp, input_shape[-1].value)
weights = self.make_var('weights', shape=[dim, num_out])
biases = self.make_var('biases', [num_out])
op = tf.nn.relu_layer if relu else tf.nn.xw_plus_b
fc = op(feed_in, weights, biases, name=name)
return fc """
Multi dimensional softmax,
refer to https://github.com/tensorflow/tensorflow/issues/210
compute softmax along the dimension of target
the native softmax only supports batch_size x dimension
"""
@layer
def softmax(self, target, axis, name=None):
max_axis = tf.reduce_max(target, axis, keepdims=True)
target_exp = tf.exp(target-max_axis)
normalize = tf.reduce_sum(target_exp, axis, keepdims=True)
softmax = tf.div(target_exp, normalize, name)
return softmax class PNet(Network):
def setup(self):
(self.feed('data') #pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 10, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='PReLU1')
.max_pool(2, 2, 2, 2, name='pool1')
.conv(3, 3, 16, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='PReLU2')
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='PReLU3')
.conv(1, 1, 2, 1, 1, relu=False, name='conv4-1')
.softmax(3,name='prob1')) (self.feed('PReLU3') #pylint: disable=no-value-for-parameter
.conv(1, 1, 4, 1, 1, relu=False, name='conv4-2')) class RNet(Network):
def setup(self):
(self.feed('data') #pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 28, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 48, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(2, 2, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.fc(128, relu=False, name='conv4')
.prelu(name='prelu4')
.fc(2, relu=False, name='conv5-1')
.softmax(1,name='prob1')) (self.feed('prelu4') #pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv5-2')) class ONet(Network):
def setup(self):
(self.feed('data') #pylint: disable=no-value-for-parameter, no-member
.conv(3, 3, 32, 1, 1, padding='VALID', relu=False, name='conv1')
.prelu(name='prelu1')
.max_pool(3, 3, 2, 2, name='pool1')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv2')
.prelu(name='prelu2')
.max_pool(3, 3, 2, 2, padding='VALID', name='pool2')
.conv(3, 3, 64, 1, 1, padding='VALID', relu=False, name='conv3')
.prelu(name='prelu3')
.max_pool(2, 2, 2, 2, name='pool3')
.conv(2, 2, 128, 1, 1, padding='VALID', relu=False, name='conv4')
.prelu(name='prelu4')
.fc(256, relu=False, name='conv5')
.prelu(name='prelu5')
.fc(2, relu=False, name='conv6-1')
.softmax(1, name='prob1')) (self.feed('prelu5') #pylint: disable=no-value-for-parameter
.fc(4, relu=False, name='conv6-2')) (self.feed('prelu5') #pylint: disable=no-value-for-parameter
.fc(10, relu=False, name='conv6-3')) def create_mtcnn(sess, model_path):
if not model_path:
model_path,_ = os.path.split(os.path.realpath(__file__)) with tf.variable_scope('pnet'):
data = tf.placeholder(tf.float32, (None,None,None,3), 'input')
pnet = PNet({'data':data})
pnet.load(os.path.join(model_path, 'det1.npy'), sess)
with tf.variable_scope('rnet'):
data = tf.placeholder(tf.float32, (None,24,24,3), 'input')
rnet = RNet({'data':data})
rnet.load(os.path.join(model_path, 'det2.npy'), sess)
with tf.variable_scope('onet'):
data = tf.placeholder(tf.float32, (None,48,48,3), 'input')
onet = ONet({'data':data})
onet.load(os.path.join(model_path, 'det3.npy'), sess) pnet_fun = lambda img : sess.run(('pnet/conv4-2/BiasAdd:0', 'pnet/prob1:0'), feed_dict={'pnet/input:0':img})
rnet_fun = lambda img : sess.run(('rnet/conv5-2/conv5-2:0', 'rnet/prob1:0'), feed_dict={'rnet/input:0':img})
onet_fun = lambda img : sess.run(('onet/conv6-2/conv6-2:0', 'onet/conv6-3/conv6-3:0', 'onet/prob1:0'), feed_dict={'onet/input:0':img})
return pnet_fun, rnet_fun, onet_fun def detect_face(img, minsize, pnet, rnet, onet, threshold, factor):
"""Detects faces in an image, and returns bounding boxes and points for them.
img: input image
minsize: minimum faces' size
pnet, rnet, onet: caffemodel
threshold: threshold=[th1, th2, th3], th1-3 are three steps's threshold
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
factor_count=0
total_boxes=np.empty((0,9))
points=np.empty(0)
h=img.shape[0]
w=img.shape[1]
minl=np.amin([h, w])
m=12.0/minsize
minl=minl*m
# create scale pyramid
scales=[]
while minl>=12:
scales += [m*np.power(factor, factor_count)]
minl = minl*factor
factor_count += 1 # first stage
for scale in scales:
hs=int(np.ceil(h*scale))
ws=int(np.ceil(w*scale))
im_data = imresample(img, (hs, ws))
im_data = (im_data-127.5)*0.0078125
img_x = np.expand_dims(im_data, 0)
img_y = np.transpose(img_x, (0,2,1,3))
out = pnet(img_y)
out0 = np.transpose(out[0], (0,2,1,3))
out1 = np.transpose(out[1], (0,2,1,3)) boxes, _ = generateBoundingBox(out1[0,:,:,1].copy(), out0[0,:,:,:].copy(), scale, threshold[0]) # inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size>0 and pick.size>0:
boxes = boxes[pick,:]
total_boxes = np.append(total_boxes, boxes, axis=0) numbox = total_boxes.shape[0]
if numbox>0:
pick = nms(total_boxes.copy(), 0.7, 'Union')
total_boxes = total_boxes[pick,:]
regw = total_boxes[:,2]-total_boxes[:,0]
regh = total_boxes[:,3]-total_boxes[:,1]
qq1 = total_boxes[:,0]+total_boxes[:,5]*regw
qq2 = total_boxes[:,1]+total_boxes[:,6]*regh
qq3 = total_boxes[:,2]+total_boxes[:,7]*regw
qq4 = total_boxes[:,3]+total_boxes[:,8]*regh
total_boxes = np.transpose(np.vstack([qq1, qq2, qq3, qq4, total_boxes[:,4]]))
total_boxes = rerec(total_boxes.copy())
total_boxes[:,0:4] = np.fix(total_boxes[:,0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h) numbox = total_boxes.shape[0]
if numbox>0:
# second stage
tempimg = np.zeros((24,24,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (24, 24))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = rnet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1,:]
ipass = np.where(score>threshold[1])
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]]
if total_boxes.shape[0]>0:
pick = nms(total_boxes, 0.7, 'Union')
total_boxes = total_boxes[pick,:]
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv[:,pick]))
total_boxes = rerec(total_boxes.copy()) numbox = total_boxes.shape[0]
if numbox>0:
# third stage
total_boxes = np.fix(total_boxes).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(total_boxes.copy(), w, h)
tempimg = np.zeros((48,48,3,numbox))
for k in range(0,numbox):
tmp = np.zeros((int(tmph[k]),int(tmpw[k]),3))
tmp[dy[k]-1:edy[k],dx[k]-1:edx[k],:] = img[y[k]-1:ey[k],x[k]-1:ex[k],:]
if tmp.shape[0]>0 and tmp.shape[1]>0 or tmp.shape[0]==0 and tmp.shape[1]==0:
tempimg[:,:,:,k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg-127.5)*0.0078125
tempimg1 = np.transpose(tempimg, (3,1,0,2))
out = onet(tempimg1)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1,:]
points = out1
ipass = np.where(score>threshold[2])
points = points[:,ipass[0]]
total_boxes = np.hstack([total_boxes[ipass[0],0:4].copy(), np.expand_dims(score[ipass].copy(),1)])
mv = out0[:,ipass[0]] w = total_boxes[:,2]-total_boxes[:,0]+1
h = total_boxes[:,3]-total_boxes[:,1]+1
points[0:5,:] = np.tile(w,(5, 1))*points[0:5,:] + np.tile(total_boxes[:,0],(5, 1))-1
points[5:10,:] = np.tile(h,(5, 1))*points[5:10,:] + np.tile(total_boxes[:,1],(5, 1))-1
if total_boxes.shape[0]>0:
total_boxes = bbreg(total_boxes.copy(), np.transpose(mv))
pick = nms(total_boxes.copy(), 0.7, 'Min')
total_boxes = total_boxes[pick,:]
points = points[:,pick] return total_boxes, points def bulk_detect_face(images, detection_window_size_ratio, pnet, rnet, onet, threshold, factor):
"""Detects faces in a list of images
images: list containing input images
detection_window_size_ratio: ratio of minimum face size to smallest image dimension
pnet, rnet, onet: caffemodel
threshold: threshold=[th1 th2 th3], th1-3 are three steps's threshold [0-1]
factor: the factor used to create a scaling pyramid of face sizes to detect in the image.
"""
all_scales = [None] * len(images)
images_with_boxes = [None] * len(images) for i in range(len(images)):
images_with_boxes[i] = {'total_boxes': np.empty((0, 9))} # create scale pyramid
for index, img in enumerate(images):
all_scales[index] = []
h = img.shape[0]
w = img.shape[1]
minsize = int(detection_window_size_ratio * np.minimum(w, h))
factor_count = 0
minl = np.amin([h, w])
if minsize <= 12:
minsize = 12 m = 12.0 / minsize
minl = minl * m
while minl >= 12:
all_scales[index].append(m * np.power(factor, factor_count))
minl = minl * factor
factor_count += 1 # # # # # # # # # # # # #
# first stage - fast proposal network (pnet) to obtain face candidates
# # # # # # # # # # # # # images_obj_per_resolution = {} # TODO: use some type of rounding to number module 8 to increase probability that pyramid images will have the same resolution across input images for index, scales in enumerate(all_scales):
h = images[index].shape[0]
w = images[index].shape[1] for scale in scales:
hs = int(np.ceil(h * scale))
ws = int(np.ceil(w * scale)) if (ws, hs) not in images_obj_per_resolution:
images_obj_per_resolution[(ws, hs)] = [] im_data = imresample(images[index], (hs, ws))
im_data = (im_data - 127.5) * 0.0078125
img_y = np.transpose(im_data, (1, 0, 2)) # caffe uses different dimensions ordering
images_obj_per_resolution[(ws, hs)].append({'scale': scale, 'image': img_y, 'index': index}) for resolution in images_obj_per_resolution:
images_per_resolution = [i['image'] for i in images_obj_per_resolution[resolution]]
outs = pnet(images_per_resolution) for index in range(len(outs[0])):
scale = images_obj_per_resolution[resolution][index]['scale']
image_index = images_obj_per_resolution[resolution][index]['index']
out0 = np.transpose(outs[0][index], (1, 0, 2))
out1 = np.transpose(outs[1][index], (1, 0, 2)) boxes, _ = generateBoundingBox(out1[:, :, 1].copy(), out0[:, :, :].copy(), scale, threshold[0]) # inter-scale nms
pick = nms(boxes.copy(), 0.5, 'Union')
if boxes.size > 0 and pick.size > 0:
boxes = boxes[pick, :]
images_with_boxes[image_index]['total_boxes'] = np.append(images_with_boxes[image_index]['total_boxes'],
boxes,
axis=0) for index, image_obj in enumerate(images_with_boxes):
numbox = image_obj['total_boxes'].shape[0]
if numbox > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
regw = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0]
regh = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1]
qq1 = image_obj['total_boxes'][:, 0] + image_obj['total_boxes'][:, 5] * regw
qq2 = image_obj['total_boxes'][:, 1] + image_obj['total_boxes'][:, 6] * regh
qq3 = image_obj['total_boxes'][:, 2] + image_obj['total_boxes'][:, 7] * regw
qq4 = image_obj['total_boxes'][:, 3] + image_obj['total_boxes'][:, 8] * regh
image_obj['total_boxes'] = np.transpose(np.vstack([qq1, qq2, qq3, qq4, image_obj['total_boxes'][:, 4]]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy())
image_obj['total_boxes'][:, 0:4] = np.fix(image_obj['total_boxes'][:, 0:4]).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) numbox = image_obj['total_boxes'].shape[0]
tempimg = np.zeros((24, 24, 3, numbox)) if numbox > 0:
for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (24, 24))
else:
return np.empty() tempimg = (tempimg - 127.5) * 0.0078125
image_obj['rnet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) # # # # # # # # # # # # #
# second stage - refinement of face candidates with rnet
# # # # # # # # # # # # # bulk_rnet_input = np.empty((0, 24, 24, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' in image_obj:
bulk_rnet_input = np.append(bulk_rnet_input, image_obj['rnet_input'], axis=0) out = rnet(bulk_rnet_input)
out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
score = out1[1, :] i = 0
for index, image_obj in enumerate(images_with_boxes):
if 'rnet_input' not in image_obj:
continue rnet_input_count = image_obj['rnet_input'].shape[0]
score_per_image = score[i:i + rnet_input_count]
out0_per_image = out0[:, i:i + rnet_input_count] ipass = np.where(score_per_image > threshold[1])
image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)]) mv = out0_per_image[:, ipass[0]] if image_obj['total_boxes'].shape[0] > 0:
h = images[index].shape[0]
w = images[index].shape[1]
pick = nms(image_obj['total_boxes'], 0.7, 'Union')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv[:, pick]))
image_obj['total_boxes'] = rerec(image_obj['total_boxes'].copy()) numbox = image_obj['total_boxes'].shape[0] if numbox > 0:
tempimg = np.zeros((48, 48, 3, numbox))
image_obj['total_boxes'] = np.fix(image_obj['total_boxes']).astype(np.int32)
dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph = pad(image_obj['total_boxes'].copy(), w, h) for k in range(0, numbox):
tmp = np.zeros((int(tmph[k]), int(tmpw[k]), 3))
tmp[dy[k] - 1:edy[k], dx[k] - 1:edx[k], :] = images[index][y[k] - 1:ey[k], x[k] - 1:ex[k], :]
if tmp.shape[0] > 0 and tmp.shape[1] > 0 or tmp.shape[0] == 0 and tmp.shape[1] == 0:
tempimg[:, :, :, k] = imresample(tmp, (48, 48))
else:
return np.empty()
tempimg = (tempimg - 127.5) * 0.0078125
image_obj['onet_input'] = np.transpose(tempimg, (3, 1, 0, 2)) i += rnet_input_count # # # # # # # # # # # # #
# third stage - further refinement and facial landmarks positions with onet
# # # # # # # # # # # # # bulk_onet_input = np.empty((0, 48, 48, 3))
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' in image_obj:
bulk_onet_input = np.append(bulk_onet_input, image_obj['onet_input'], axis=0) out = onet(bulk_onet_input) out0 = np.transpose(out[0])
out1 = np.transpose(out[1])
out2 = np.transpose(out[2])
score = out2[1, :]
points = out1 i = 0
ret = []
for index, image_obj in enumerate(images_with_boxes):
if 'onet_input' not in image_obj:
ret.append(None)
continue onet_input_count = image_obj['onet_input'].shape[0] out0_per_image = out0[:, i:i + onet_input_count]
score_per_image = score[i:i + onet_input_count]
points_per_image = points[:, i:i + onet_input_count] ipass = np.where(score_per_image > threshold[2])
points_per_image = points_per_image[:, ipass[0]] image_obj['total_boxes'] = np.hstack([image_obj['total_boxes'][ipass[0], 0:4].copy(),
np.expand_dims(score_per_image[ipass].copy(), 1)])
mv = out0_per_image[:, ipass[0]] w = image_obj['total_boxes'][:, 2] - image_obj['total_boxes'][:, 0] + 1
h = image_obj['total_boxes'][:, 3] - image_obj['total_boxes'][:, 1] + 1
points_per_image[0:5, :] = np.tile(w, (5, 1)) * points_per_image[0:5, :] + np.tile(
image_obj['total_boxes'][:, 0], (5, 1)) - 1
points_per_image[5:10, :] = np.tile(h, (5, 1)) * points_per_image[5:10, :] + np.tile(
image_obj['total_boxes'][:, 1], (5, 1)) - 1 if image_obj['total_boxes'].shape[0] > 0:
image_obj['total_boxes'] = bbreg(image_obj['total_boxes'].copy(), np.transpose(mv))
pick = nms(image_obj['total_boxes'].copy(), 0.7, 'Min')
image_obj['total_boxes'] = image_obj['total_boxes'][pick, :]
points_per_image = points_per_image[:, pick] ret.append((image_obj['total_boxes'], points_per_image))
else:
ret.append(None) i += onet_input_count return ret # function [boundingbox] = bbreg(boundingbox,reg)
def bbreg(boundingbox,reg):
"""Calibrate bounding boxes"""
if reg.shape[1]==1:
reg = np.reshape(reg, (reg.shape[2], reg.shape[3])) w = boundingbox[:,2]-boundingbox[:,0]+1
h = boundingbox[:,3]-boundingbox[:,1]+1
b1 = boundingbox[:,0]+reg[:,0]*w
b2 = boundingbox[:,1]+reg[:,1]*h
b3 = boundingbox[:,2]+reg[:,2]*w
b4 = boundingbox[:,3]+reg[:,3]*h
boundingbox[:,0:4] = np.transpose(np.vstack([b1, b2, b3, b4 ]))
return boundingbox def generateBoundingBox(imap, reg, scale, t):
"""Use heatmap to generate bounding boxes"""
stride=2
cellsize=12 imap = np.transpose(imap)
dx1 = np.transpose(reg[:,:,0])
dy1 = np.transpose(reg[:,:,1])
dx2 = np.transpose(reg[:,:,2])
dy2 = np.transpose(reg[:,:,3])
y, x = np.where(imap >= t)
if y.shape[0]==1:
dx1 = np.flipud(dx1)
dy1 = np.flipud(dy1)
dx2 = np.flipud(dx2)
dy2 = np.flipud(dy2)
score = imap[(y,x)]
reg = np.transpose(np.vstack([ dx1[(y,x)], dy1[(y,x)], dx2[(y,x)], dy2[(y,x)] ]))
if reg.size==0:
reg = np.empty((0,3))
bb = np.transpose(np.vstack([y,x]))
q1 = np.fix((stride*bb+1)/scale)
q2 = np.fix((stride*bb+cellsize-1+1)/scale)
boundingbox = np.hstack([q1, q2, np.expand_dims(score,1), reg])
return boundingbox, reg # function pick = nms(boxes,threshold,type)
def nms(boxes, threshold, method):
if boxes.size==0:
return np.empty((0,3))
x1 = boxes[:,0]
y1 = boxes[:,1]
x2 = boxes[:,2]
y2 = boxes[:,3]
s = boxes[:,4]
area = (x2-x1+1) * (y2-y1+1)
I = np.argsort(s)
pick = np.zeros_like(s, dtype=np.int16)
counter = 0
while I.size>0:
i = I[-1]
pick[counter] = i
counter += 1
idx = I[0:-1]
xx1 = np.maximum(x1[i], x1[idx])
yy1 = np.maximum(y1[i], y1[idx])
xx2 = np.minimum(x2[i], x2[idx])
yy2 = np.minimum(y2[i], y2[idx])
w = np.maximum(0.0, xx2-xx1+1)
h = np.maximum(0.0, yy2-yy1+1)
inter = w * h
if method is 'Min':
o = inter / np.minimum(area[i], area[idx])
else:
o = inter / (area[i] + area[idx] - inter)
I = I[np.where(o<=threshold)]
pick = pick[0:counter]
return pick # function [dy edy dx edx y ey x ex tmpw tmph] = pad(total_boxes,w,h)
def pad(total_boxes, w, h):
"""Compute the padding coordinates (pad the bounding boxes to square)"""
tmpw = (total_boxes[:,2]-total_boxes[:,0]+1).astype(np.int32)
tmph = (total_boxes[:,3]-total_boxes[:,1]+1).astype(np.int32)
numbox = total_boxes.shape[0] dx = np.ones((numbox), dtype=np.int32)
dy = np.ones((numbox), dtype=np.int32)
edx = tmpw.copy().astype(np.int32)
edy = tmph.copy().astype(np.int32) x = total_boxes[:,0].copy().astype(np.int32)
y = total_boxes[:,1].copy().astype(np.int32)
ex = total_boxes[:,2].copy().astype(np.int32)
ey = total_boxes[:,3].copy().astype(np.int32) tmp = np.where(ex>w)
edx.flat[tmp] = np.expand_dims(-ex[tmp]+w+tmpw[tmp],1)
ex[tmp] = w tmp = np.where(ey>h)
edy.flat[tmp] = np.expand_dims(-ey[tmp]+h+tmph[tmp],1)
ey[tmp] = h tmp = np.where(x<1)
dx.flat[tmp] = np.expand_dims(2-x[tmp],1)
x[tmp] = 1 tmp = np.where(y<1)
dy.flat[tmp] = np.expand_dims(2-y[tmp],1)
y[tmp] = 1 return dy, edy, dx, edx, y, ey, x, ex, tmpw, tmph # function [bboxA] = rerec(bboxA)
def rerec(bboxA):
"""Convert bboxA to square."""
h = bboxA[:,3]-bboxA[:,1]
w = bboxA[:,2]-bboxA[:,0]
l = np.maximum(w, h)
bboxA[:,0] = bboxA[:,0]+w*0.5-l*0.5
bboxA[:,1] = bboxA[:,1]+h*0.5-l*0.5
bboxA[:,2:4] = bboxA[:,0:2] + np.transpose(np.tile(l,(2,1)))
return bboxA def imresample(img, sz):
im_data = cv2.resize(img, (sz[1], sz[0]), interpolation=cv2.INTER_AREA) #@UndefinedVariable
return im_data # This method is kept for debugging purpose
# h=img.shape[0]
# w=img.shape[1]
# hs, ws = sz
# dx = float(w) / ws
# dy = float(h) / hs
# im_data = np.zeros((hs,ws,3))
# for a1 in range(0,hs):
# for a2 in range(0,ws):
# for a3 in range(0,3):
# im_data[a1,a2,a3] = img[int(floor(a1*dy)),int(floor(a2*dx)),a3]
# return im_data
参考:
1 https://zhuanlan.zhihu.com/p/25025596
2 https://link.zhihu.com/?target=https%3A//github.com/shanren7/real_time_face_recognition
3 https://blog.csdn.net/mr_evanchen/article/details/77650883
4 https://github.com/ShyBigBoy/face-detection-mtcnn
02-人脸识别-基于MTCNN,框选人脸区域-detect_face的更多相关文章
- 人脸识别(基于Caffe)
人脸识别(基于Caffe, 来自tyd) 人脸识别(判断是否为人脸) LMDB(数据库, 为Caffe支持的分类数据源) mkdir face_detect cd face_detect mkdir ...
- 基于Emgu CV+百度人脸识别,实现视频动态 人脸抓取与识别
背景 目前AI 处于风口浪尖,作为 公司的CTO,也作为自己的技术专研,开始了AI之旅,在朋友圈中也咨询 一些大牛对于AI 机器学习框架的看法,目前自己的研究方向主要开源的 AI 库,如:Emgu C ...
- 3D动态人脸识别技术分析——世纪晟人脸识别实现三维人脸建模
- 目录 - 国内3D动态人脸识别现状概况 - 新形势下人脸识别技术发展潜力 - 基于深度学习的3D动态人脸识别技术分析 1. 非线性数据建模方法 2. 基于3D变形模型的人脸建模 - 案例结合——世 ...
- facenet 人脸识别(二)——创建人脸库搭建人脸识别系统
搭建人脸库 选择的方式是从百度下载明星照片 照片下载,downloadImageByBaidu.py # coding=utf-8 """ 爬取百度图片的高清原图 &qu ...
- uniapp安卓ios百度人脸识别、活体检测、人脸采集APP原生插件
插件亮点 1 支持安卓平板(横竖屏均可),苹果的iPad.2 颜色图片均可更换. 特别提醒 此插件包含 android 端和 iOS 端,考虑到有些同学只做其中一个端的 app,特意分为 2 个插件, ...
- 01-人脸识别-基于MTCNN,框选人脸区域-detect_face_main
(本系列随笔持续更新) 搭建要求 详细的搭建过程在 参考资料1 中已经有啦. TensorFlow 1.6.0 OpenCV 2.4.8 仅仅是加载和读取图片的需要 Ubuntu 14.04 64bi ...
- 03-人脸识别-基于MTCNN,显示5个人脸特征
import tensorflow as tf import numpy as np import cv2 import detect_face import matplotlib.pyplot as ...
- 【Python+OpenCV】人脸识别基于环境Windows+Python3 version_3(Anaconda3)+OpenCV3.4.3安装配置最新版安装配置教程
注:本次安装因为我要安装的是win10(64bit)python3.7与OpenCV3.4.3教程(当下最新版,记录下时间2018-11-17),实际中这个教程的方法对于win10,32位又或是64位 ...
- 基于深度学习的人脸性别识别系统(含UI界面,Python代码)
摘要:人脸性别识别是人脸识别领域的一个热门方向,本文详细介绍基于深度学习的人脸性别识别系统,在介绍算法原理的同时,给出Python的实现代码以及PyQt的UI界面.在界面中可以选择人脸图片.视频进行检 ...
随机推荐
- 选择排序法(C语言)
基本思路 在每一次的排序中选出最小(或最大)的数,将其放在数组最前端,然后在后面的数中重复此步骤,最终达到排序的目的. 算法描述 将存于数组首位数与后面的数依次比较,将其中的较小的数放到数组放到数组首 ...
- bootstrap-editable 中关于onEditableSave 回调
问题描述 在对bootstrap-editable 进行编辑时,有两种使用方法:一种直接在每一个column中进行编辑保存,例如:{ title:'标题', field:'title', width: ...
- 不支持中国移动的N79频段,红米K30是假5G手机么?影响有多大?
原文:https://mparticle.uc.cn/article.html?uc_param_str=frdnsnpfvecpntnwprdssskt&btifl=100&app= ...
- Linux网络编程基础API
第5章 Linux网络编程基础API 探讨Linux网络编程基础API与内核中TCP/IP协议族之间的关系,并未后续章节提供编程基础.从3个方面讨论Linux网络API. socket地址API.so ...
- Docker系列之学习笔记
一.Docker简介 1.1.Docker架构 Docker 使用客户端-服务器 (C/S) 架构模式,分为Docker守护进程和客户端,Docker 客户端,实际上是 docker 的二进制程序,D ...
- Exercises for IN1900
Exercises for IN1900October 14, 2019PrefaceThis document contains a number of programming exercises ...
- Window权限维持(二):计划任务
Windows操作系统提供了一个实用程序(schtasks.exe),使系统管理员能够在特定的日期和时间执行程序或脚本.这种行为可作为一种持久性机制被red team利用.通过计划任务执行持久性不需要 ...
- kali渗透综合靶机(七)--Super-Mario-Host靶机
kali渗透综合靶机(七)--Super-Mario-Host靶机 靶机百度云下载 链接:https://pan.baidu.com/s/13l1FUgJjXArfoTOfcmPsbA 提取码:a8 ...
- 邮箱图标的css样式
<div> <div style="position:relative; height:40px;width: 70px;border:2px solid black; m ...
- Filco圣手二代双模蓝牙机械键盘连接方法
转自:https://www.cnblogs.com/goldenSky/p/11437780.html 常规方法 确认键盘的电源接通. 同时按下「Ctrl」+「Alt」+「Fn」执行装置切换模式.配 ...