复旦高等代数 I(15级)每周一题
[问题2015A01] 证明: 第三类分块初等变换是若干个第三类初等变换的复合. 特别地, 第三类分块初等变换不改变行列式的值.
[问题2015A02] 设 $n\,(n\geq 2)$ 阶方阵 $A=(a_{ij}(x))$, 其中每个元素 $a_{ij}(x)$ 都是关于未定元 $x$ 的多项式. 若 $k$ 是正整数, 满足 $x^k$ 整除 $A$ 的所有代数余子式 $A_{ij}$, 证明: $x^{k+1}$ 整除 $A$ 的行列式 $|A|$.
提示 考虑 $A$ 的伴随矩阵 $A^*$ 的行列式. 另外, 本题还可以推广为: 若 $k$ 是正整数, $p(x)$ 是数域 $\mathbb{K}$ 上的不可约多项式, 满足 $p(x)^k$ 整除 $A$ 的所有代数余子式 $A_{ij}$, 则 $p(x)^{k+1}$ 整除 $|A|$.
[问题2015A03] 设 $M=\begin{pmatrix} a_1^2 & a_1a_2+1 & \cdots & a_1a_n+1 \\ a_2a_1+1 & a_2^2 & \cdots & a_2a_n+1 \\ \vdots & \vdots & \vdots & \vdots \\ a_na_1+1 & a_na_2+1 & \cdots & a_n^2 \end{pmatrix}$, 证明: $r(M)\geq n-1$.
提示 参考复旦高代教材第102页的例2.6.5, 可用秩的降阶公式来做.
[问题2015A04] 设 $A$ 是 $m\times n$ 实矩阵, 试用秩的子式判别法和 Cauchy-Binet 公式证明: $r(A'A)=r(AA')=r(A)$.
提示 这是复旦高代教材第179页的复习题41, 复旦高代白皮书第151页的例3.72, 那里用的是线性方程组的求解理论来做的.
[问题2015A05] 设 $A,B$ 都是 $n$ 阶方阵, 约定 $A^0=I_n$.
(1) 若 $k$ 是非负整数, 使得 $r(A^k)=r(A^{k+1})$, 证明: 对任意的 $i\geq k$, $r(A^i)=r(A^k)$.
(2) 记 $s(A)=\min\{k\in\mathbb{N}\mid r(A^k)=r(A^{k+1})\}$, 称为 $A$ 的稳定指数, 意味着从 $i\geq s(A)$ 开始, $A^i$ 的秩保持稳定了, 这个最终稳定的秩记为 $r_{\infty}(A)$, 即 $r_{\infty}(A)=r(A^i)$, $\forall\,i\geq s(A)$. 证明: $s(A)$ 必存在, 并且是 $0$ 和 $n$ 之间的某个自然数.
(3) 证明: $r_{\infty}(AB)=r_{\infty}(BA)$.
(4) 证明: $|s(AB)-s(BA)|\leq 1$, 并举例说明可取到 $A,B$, 使得 $|s(AB)-s(BA)|=1$.
提示 前面两问参考复旦高代白皮书例4.32的证明. 后面两问合在一起考虑, 利用秩的基本公式以及 $(AB)^{i+1}=A(BA)^iB$ 和 $B(AB)^{i+1}A=(BA)^{i+2}$ 来证明.
[问题2015A06] 设 $A=(a_{ij})$ 是 $n$ 阶方阵, $A_{ij}$ 表示元素 $a_{ij}$ 对应的代数余子式. 设 $1\leq i_1<\cdots<i_r\leq n$, $1\leq j_1<\cdots<j_r\leq n$ 为两组给定的指标集, $\hat{\,i}$ 表示 $i$ 不在指标集中, 试证明:
$$\begin{vmatrix} A_{i_1j_1} & \cdots & A_{i_rj_1} \\ \vdots & \vdots & \vdots \\ A_{i_1j_r} & \cdots & A_{i_rj_r} \end{vmatrix}=(-1)^{i_1+\cdots+i_r+j_1+\cdots+j_r}A\begin{pmatrix} 1 & \cdots & \hat{i_1} & \cdots & \hat{i_r} & \cdots & n \\ 1 & \cdots & \hat{j_1} & \cdots & \hat{j_r} & \cdots & n \end{pmatrix}|A|^{r-1}.$$
提示 先利用公式 $AA^*=|A|I_n$ 以及复旦高代白皮书例9.39类似的方法证明 $i_1=j_1=1$, $\cdots$, $i_r=j_r=r$ 的特殊情形, 然后再利用行列对换将一般情形化约到特殊情形即可.
[问题2015A07] 设 $V$ 是 $M_n(\mathbb{K})$ 的子空间, 满足 $V$ 中所有的非零矩阵都是非异阵, 证明: $\dim_{\mathbb{K}}V\leq n$.
提示 构造 $M_n(\mathbb{K})$ 的子空间 $U$, 满足 $U$ 中所有的矩阵都是奇异阵且 $\dim U=n^2-n$, 然后利用直和 $V\oplus U\subseteq M_n(\mathbb{K})$ 得到结论.
[问题2015A08] 设 $\varphi$ 是 $n$ 维线性空间 $V$ 上的线性变换, 满足 $\varphi^m=0$, 其中 $m,q$ 为正整数, $n=mq+1$. 证明: $\dim\mathrm{Im\,}\varphi\leq n-q-1$.
提示 代数方法可用 Sylvester 不等式, 几何方法可用线性映射的维数公式.
[问题2015A09] 定义: 线性空间 $V$ 中的一族向量 $B=\{e_i\}_{i\in I}$ 称为线性无关的, 如果 $B$ 中任意有限个向量都是线性无关的. $B=\{e_i\}_{i\in I}$ 称为线性空间 $V$ 的一组基, 如果 $B$ 是线性无关的, 并且 $V=L(B)$, 即 $V$ 中任一向量都是 $B$ 中有限个向量的线性组合. 利用 Zorn 引理或选择公理可证明任一线性空间 $V$ 中都存在一组基 $B$ (在抽象代数课中会给出证明, 大家现在予以承认即可).
(1) 证明: $\mathbb{K}[x]$ 的一组基为 $B=\{1,x,x^2,x^3,\cdots\}$.
(2) 举例说明: 复旦高代教材第 204 页的习题 3 对无限维线性空间一般并不成立, 即存在无限维线性空间 $V$ 上的自同构 $\varphi$ 以及 $\varphi$ 的不变子空间 $W$, 但 $W$ 不是 $\varphi^{-1}$ 的不变子空间.
提示 考虑 $V=\mathbb{K}[x]$ 的基之间的双射诱导的线性自同构, 然后再构造相应的 $\varphi$-不变子空间 $W$.
[问题2015A10] 设 $V$ 是数域 $\mathbb{K}$ 上的 $n$ 维线性空间, $\varphi$ 是 $V$ 上的线性变换, 证明下列条件等价:
(1) $V=\mathrm{Ker\,}\varphi+\mathrm{Im\,}\varphi$;
(2) $V=\mathrm{Ker\,}\varphi\oplus\mathrm{Im\,}\varphi$;
(3) $\mathrm{Ker\,}\varphi\cap\mathrm{Im\,}\varphi=0$;
(4) $\mathrm{Ker\,}\varphi=\mathrm{Ker\,}\varphi^2$, 或等价地, $\dim\mathrm{Ker\,}\varphi=\dim\mathrm{Ker\,}\varphi^2$;
(5) $\mathrm{Im\,}\varphi=\mathrm{Im\,}\varphi^2$, 或等价地, $r(\varphi)=r(\varphi^2)$;
(6) $\mathrm{Ker\,}\varphi$ 存在 $\varphi$-不变的补空间, 即存在 $\varphi$-不变子空间 $U$, 使得 $V=\mathrm{Ker\,}\varphi\oplus U$;
(7) $\mathrm{Im\,}\varphi$ 存在 $\varphi$-不变的补空间, 即存在 $\varphi$-不变子空间 $W$, 使得 $V=\mathrm{Im\,}\varphi\oplus W$.
[问题2015A11] 设 $f_1(x),f_2(x),\cdots,f_m(x)\in\mathbb{K}[x]$, 证明: $$((f_1(x),f_2(x)),f_3(x),\cdots,f_m(x))=(f_1(x),f_2(x),f_3(x),\cdots,f_m(x)),$$ $$[[f_1(x),f_2(x)],f_3(x),\cdots,f_m(x)]=[f_1(x),f_2(x),f_3(x),\cdots,f_m(x)].$$
注 复旦高代书第 216 页定理 5.3.1 告诉我们: 可用辗转相除法求两个多项式的最大公因式, 第 220 页推论 5.3.6 将求两个多项式的最小公倍式转化为求两个多项式的最大公因式. 由于最大公因式 (最小公倍式) 的定义与 $f_i(x)$ 的顺序无关, 上述公式告诉我们: 求 $m$ 个多项式的最大公因式 (最小公倍式) 时, 可以任意选取两个多项式先求最大公因式 (最小公倍式), 然后再求 $m-1$ 个多项式的最大公因式 (最小公倍式), 这样不断地递推下去, 最后可求得 $m$ 个多项式的最大公因式 (最小公倍式). 这是一种不依赖于多项式因式分解的可计算的方法.
[问题2015A12] 设循环矩阵 $A=\begin{pmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ a_{n-1} & a_n & a_1 & \cdots & a_{n-2} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{pmatrix}$ 是非异阵, 求证: $A^{-1}$ 也是循环矩阵.
提示 利用新白皮书的例2.12、例2.52和例5.75类似的证明方法 (互素多项式的应用) 来做.
复旦高等代数 I(15级)每周一题的更多相关文章
- [问题2014S12] 复旦高等代数II(13级)每周一题(第十二教学周)
[问题2014S12] 设 \(A,B\) 都是 \(n\) 阶半正定实对称阵, 证明: \(AB\) 的所有特征值都是非负实数. 进一步, 若 \(A,B\) 都是正定实对称阵, 证明: \(AB ...
- 复旦高等代数I(19级)每周一题
本学期的高等代数每周一题活动计划从第2教学周开始,到第15教学周结束,每周的周末公布一道思考题(共14道,思考题一般与下周授课内容密切相关),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博 ...
- 复旦高等代数II(18级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十五教学周结束,每周的周末公布一道思考题(预计15道),供大家思考和解答.每周一题将通过“高等代数官方博客”(以博文的形式)和“高等代 ...
- 复旦高等代数 II(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第一教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1道思考题(共16道),供大家思考和解答.每周一题通过“ ...
- 复旦高等代数 I(16级)每周一题
每周一题的说明 一.本学期高代I的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: ...
- 复旦高等代数 I(17级)每周一题
本学期将继续进行高等代数每周一题的活动.计划从第二教学周开始,到第十六教学周为止(根据法定节假日安排,中间个别周会适当地停止),每周的周末将公布1-2道思考题,供大家思考和解答.每周一题通过“谢启鸿高 ...
- 复旦高等代数II(16级)每周一题
每周一题的说明 一.本学期高代II的每周一题面向16级的同学,将定期更新(一般每周的周末公布下一周的题目); 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家 ...
- 复旦大学2015--2016学年第二学期(15级)高等代数II期末考试第六大题解答
六.(本题10分) 设 $n$ 阶复方阵 $A$ 的特征多项式为 $f(\lambda)$, 复系数多项式 $g(\lambda)$ 满足 $(f(g(\lambda)),g'(\lambda))= ...
- 复旦大学2015--2016学年第一学期(15级)高等代数I期末考试第八大题解答
八.(本题10分) 设 $V$ 为数域 $K$ 上的 $n$ 维线性空间, $\varphi$ 为 $V$ 上的线性变换. 子空间 $C(\varphi,\alpha)=L(\alpha,\varp ...
- 复旦高等代数 I(16级)思考题
思考题的说明 一.本学期高代I的思考题面向16级的同学,将不定期地进行更新; 二.欢迎16级的同学通过微信或书面方式提供解答图片或纸质文件给我,优秀的解答可以分享给大家: 三.请大家先独立解答思考题, ...
随机推荐
- .net core使用ocelot---第五篇 服务质量
简介 .net core使用ocelot---第一篇 简单使用 .net core使用ocelot---第二篇 身份验证使用 .net core使用ocelot---第三篇 日志记录 .net c ...
- 压测工具wrk的编译安装与基础使用
Linux上编译安装: [root@centos ~]# cd /usr/local/src [root@centos ~]# yum install git -y [root@centos ~]# ...
- 整理:史上最简单的 MySQL 教程
1 前言 数据库(Database)是按照数据结构来组织.存储和管理数据的仓库,它产生于距今六十多年前,随着信息技术和市场的发展,特别是二十世纪九十年代以后,数据管理不再仅仅是存储和管理数据,而转变成 ...
- ArrayList集合实现RandomAccess接口有何作用?为何LinkedList集合却没实现这接口
详见:https://blog.csdn.net/weixin_39148512/article/details/79234817 众所周知,在List集合中,我们经常会用到ArrayList以及Li ...
- Spring Boot 笔记 (2) - 使用 log4j2 记日志
日志框架的选用 Spring 使用的默认日志框架是 logback, 默认情况下会采取默认的 autoconfiguration; 即便想对日志的一些配置进行修改也比较方便, 详细可以参考: Spri ...
- 2013.4.24 - KDD第六天
今天早上,中秋给我发了一个压缩包,里面有战德臣的课件,昨天我说我SQL没学好,他说给我发战徳臣课件,然后说我SQL不会的话可以看这个,还有两篇文 章<LDA数学八卦>以及<A Not ...
- Docker容器化技术(下)
Docker容器化技术(下) 一.Dockerfile基础命令 1.1.FROM - 基于基准镜像 FROM centos #制作基准镜像(基于centos) FROM scratch #不依赖任何基 ...
- 用js刷剑指offer(两个链表的第一个公共结点)
题目描述 输入两个链表,找出它们的第一个公共结点. 牛客网链接 js代码 /*function ListNode(x){ this.val = x; this.next = null; }*/ fun ...
- 微信小程序~获取位置信息
微信小程序提供的getlocation来获取用户的定位,能够得到用户的经纬度信息 (注:getloaction需要用户授权scope.userLocation)结合map组件能够得到用户的详细定位 & ...
- Spring -09 -在Spring工程 中加载 properties 文件 -为某个属性添加注解赋初值
1.在src 下新建 xxx.properties 文件,不要任意加空格,注明jdbc等标识名!2.在spring 配置文件中先引入xmlns:context,在下面添加2.1如果需要记载多个配置文件 ...