蓄水池采样算法

问题描述分析

采样问题经常会被遇到,比如:

  1. 从 100000 份调查报告中抽取 1000 份进行统计。
  2. 从一本很厚的电话簿中抽取 1000 人进行姓氏统计。
  3. 从 Google 搜索 "Ken Thompson",从中抽取 100 个结果查看哪些是今年的。

这些都是很基本的采用问题。

既然说到采样问题,最重要的就是做到公平,也就是保证每个元素被采样到的概率是相同的。所以可以想到要想实现这样的算法,就需要掷骰子,也就是随机数算法。(这里就不具体讨论随机数算法了,假定我们有了一套很成熟的随机数算法了)

对于第一个问题,还是比较简单,通过算法生成 \([0, 100000 - 1)\) 间的随机数 1000 个,并且保证不重复即可。再取出对应的元素即可。

但是对于第二和第三个问题,就有些不同了,我们不知道数据的整体规模有多大。可能有人会想到,我可以先对数据进行一次遍历,计算出数据的数量 \(N\),然后再按照上述的方法进行采样即可。这当然可以,但是并不好,毕竟这可能需要花上很多时间。也可以尝试估算数据的规模,但是这样得到的采样数据分布可能并不平均。

算法过程

终于要讲到蓄水池采样算法(Reservoir Sampling)了。先说一下算法的过程:

假设数据序列的规模为 \(n\),需要采样的数量的为 \(k\)。

首先构建一个可容纳 \(k\) 个元素的数组,将序列的前 \(k\) 个元素放入数组中。

然后从第 \(k+1\) 个元素开始,以 \(\frac{k}{n}\) 的概率来决定该元素是否被替换到数组中(数组中的元素被替换的概率是相同的)。 当遍历完所有元素之后,数组中剩下的元素即为所需采取的样本。

证明过程

对于第 \(i\) 个数(\(i \le k\))。在 \(k\) 步之前,被选中的概率为 \(1\)。当走到第 \(k + 1\) 步时,被 \(k + 1\) 个元素替换的概率 = \(k + 1\) 个元素被选中的概率 * \(i\) 被选中替换的概率,即为 \(\frac{k}{k + 1} \times \frac{1}{k} = \frac{1}{k + 1}\)。则被保留的概率为 \(1 - \frac{1}{k + 1} = \frac{k}{k + 1}\)。依次类推,不被 \(k + 2\) 个元素替换的概率为 \(1 - \frac{k}{k + 2} \times \frac{1}{k} = \frac{k + 1}{k + 2}\)。则运行到第 \(n\) 步时,被保留的概率 = 被选中的概率 * 不被替换的概率,即:

\[1 \times \frac{k}{k + 1} \times \frac{k + 1}{k + 2} \times \frac{k + 2}{k + 3} \times … \times \frac{n - 1}{n} = \frac{k}{n}
\]

对于第 \(j\) 个数(\(j > k\))。在第 \(j\) 步被选中的概率为 \(\frac{k}{j}\)。不被 \(j + 1\) 个元素替换的概率为 \(1 - \frac{k}{j + 1} \times \frac{1}{k} = \frac{j}{j + 1}\)。则运行到第 \(n\) 步时,被保留的概率 = 被选中的概率 * 不被替换的概率,即:

\[\frac{k}{j} \times \frac{j}{j + 1} \times \frac{j + 1}{j + 2} \times \frac{j + 2}{j + 3} \times ... \times \frac{n - 1}{n} = \frac{k}{n}
\]

所以对于其中每个元素,被保留的概率都为 \(\frac{k}{n}\).

代码示例

贴出测试用的示例代码(Java 实现):

public class ReservoirSamplingTest {

    private int[] pool; // 所有数据
private final int N = 100000; // 数据规模
private Random random = new Random(); @Before
public void setUp() throws Exception {
// 初始化
pool = new int[N];
for (int i = 0; i < N; i++) {
pool[i] = i;
}
} private int[] sampling(int K) {
int[] result = new int[K];
for (int i = 0; i < K; i++) { // 前 K 个元素直接放入数组中
result[i] = pool[i];
} for (int i = K; i < N; i++) { // K + 1 个元素开始进行概率采样
int r = random.nextInt(i + 1);
if (r < K) {
result[r] = pool[i];
}
} return result;
} @Test
public void test() throws Exception {
for (int i : sampling(100)) {
System.out.println(i);
}
}
}

结果就不贴出来了,毕竟每次运行结果都不一样。

总结

蓄水池算法适用于对一个不清楚规模的数据集进行采样。以前在某个地方看到过一个面试题,说是从一个字符流中进行采样,最后保留 10 个字符,而并不知道这个流什么时候结束,且须保证每个字符被采样到的几率相同。用的就是这个算法。

在高德纳的 TAOCP 中有对于这个算法的描述,可以说这是个很精巧的算法。在看到这个算法实现前,很难想到可以通过这样的一种方式进行采样。

蓄水池采样算法(Reservoir Sampling)的更多相关文章

  1. 【算法34】蓄水池抽样算法 (Reservoir Sampling Algorithm)

    蓄水池抽样算法简介 蓄水池抽样算法随机算法的一种,用来从 N 个样本中随机选择 K 个样本,其中 N 非常大(以至于 N 个样本不能同时放入内存)或者 N 是一个未知数.其时间复杂度为 O(N),包含 ...

  2. 蓄水池抽样算法 Reservoir Sampling

    2018-03-05 14:06:40 问题描述:给出一个数据流,这个数据流的长度很大或者未知.并且对该数据流中数据只能访问一次.请写出一个随机选择算法,使得数据流中所有数据被选中的概率相等. 问题求 ...

  3. Reservoir Sampling 蓄水池采样算法

    https://blog.csdn.net/huagong_adu/article/details/7619665 https://www.jianshu.com/p/63f6cf19923d htt ...

  4. 382. Linked List Random Node(蓄水池采样)

    1. 问题 给定一个单链表,随机返回一个结点,要求每个结点被选中的概率相等. 2. 思路 在一个给定长度的数组中等概率抽取一个数,可以简单用随机函数random.randint(0, n-1)得到索引 ...

  5. 【数据结构与算法】蓄水池抽样算法(Reservoir Sampling)

    问题描述 给定一个数据流,数据流长度 N 很大,且 N 直到处理完所有数据之前都不可知,请问如何在只遍历一遍数据(O(N))的情况下,能够随机选取出 m 个不重复的数据. 比较直接的想法是利用随机数算 ...

  6. Spark MLlib之水塘抽样算法(Reservoir Sampling)

    1.理解 问题定义可以简化如下:在不知道文件总行数的情况下,如何从文件中随机的抽取一行? 首先想到的是我们做过类似的题目吗?当然,在知道文件行数的情况下,我们可以很容易的用C运行库的rand函数随机的 ...

  7. Reservoir Sampling - 蓄水池抽样问题

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  8. Reservoir Sampling - 蓄水池抽样

    问题起源于编程珠玑Column 12中的题目10,其描述如下: How could you select one of n objects at random, where you see the o ...

  9. MCMC等采样算法

    一.直接采样 直接采样的思想是,通过对均匀分布采样,实现对任意分布的采样.因为均匀分布采样好猜,我们想要的分布采样不好采,那就采取一定的策略通过简单采取求复杂采样. 假设y服从某项分布p(y),其累积 ...

随机推荐

  1. thinkphp中redirect重定向后隐藏index.php

    首先,.htaccess文件要配置好隐藏index.php.系统默认生成的就行. 然后,也是最关键的一部,要在Application/Home/Conf里的config.php文件中增加如下配置: & ...

  2. Config Advisor

    Description: Config Advisor Overview Config Advisor is a configuration validation and health check t ...

  3. Win7系统安装Centos7.0双系统(二)

    4.6语言选择

  4. 【转】一道SQL SERVER DateTime的试题

    学习过上一篇SQL SERVER DateTime精度的文章后.再来做一道题. IF ('2011-07-31 00:00:00.000' BETWEEN '2011-07-01' and '2011 ...

  5. Apache日志不记录图片文件设置方法和来源日志的配置

    Apache日志不记录图片文件设置方法 <FilesMatch "\.(ico|gif|jpg|swf)">SetEnv IMAG 1</FilesMatch&g ...

  6. class 文件与dex文件区别 (dvm与jvm区别)及Android DVM介绍

    区别一:dvm执行的是.dex格式文件  jvm执行的是.class文件   android程序编译完之后生产.class文件,然后,dex工具会把.class文件处理成.dex文件,然后把资源文件和 ...

  7. Html4与Html5的关键区别

    HTML5是下一代HTML标准版本,4与5有很多相同之处,有HTML从头构建,比4升级到5要方便. 以下是10个关键区别: 1.HTML5最近很火,但是标准还在制定,4则十年之多了,不会6变: 2.简 ...

  8. 【SQL Server】系统学习之一:表表达式

    本节讨论的相关内容包括:视图.派生表.CTE.内联表值函数 场景:如果要查询一组数据(例如聚合数据,也就是几个表聚合在一起的数据),这些数据并未在数据库中以表的形式存在. 1.视图:通常用来分解大型的 ...

  9. 黄聪:VS2010每次F5启动都重新编译但是没办法进入断点

    这个问题主要是没有把Debug和Realse的生成配置勾上:

  10. Chrome插件开发入门(二)——消息传递机制

    Chrome插件开发入门(二)——消息传递机制   由于插件的js运行环境有区别,所以消息传递机制是一个重要内容.阅读了很多博文,大家已经说得很清楚了,直接转一篇@姬小光 的博文,总结的挺好.后面附一 ...