HDU - 5685 Problem A(逆元)
这题我第一次想的就是直接模拟,因为我是这样感觉的,输入n是3次方,长度是5次方,加起来才8次方,里面的操作又不复杂,感觉应该能过,然而不如我所料,TLE了,玛德,这是第一次的代码。
#include <bits/stdc++.h>
using namespace std; const int INF=0x3f3f3f3f;
typedef long long LL;
#define PI(A) printf("%d\n",A)
#define SI(N) scanf("%d",&(N))
#define SII(N,M) scanf("%d%d",&(N),&(M))
#define cle(a,val) memset(a,(val),sizeof(a))
#define rep(i,b) for(int i=0;i<(b);i++)
#define Rep(i,a,b) for(int i=(a);i<=(b);i++)
#define reRep(i,a,b) for(int i=(a);i>=(b);i--)
const double EPS= 1e- ; /* ///////////////////////// C o d i n g S p a c e ///////////////////////// */ const int MAXN= + ; char str[MAXN];
int N; int main()
{
while(~SI(N))
{
int x,y;
scanf("%s",str);
while(N--)
{
LL ans=;
SII(x,y);
x--,y--;
for (int i=x;i<=y;i++)
{
ans=ans*((int)str[i]-);
ans%=;
}
printf("%lld\n",ans);
}
}
return ;
}
之后想了一会,想不通,就查题解了,我看的是这个题解 http://www.cnblogs.com/inmoonlight/p/5512340.html
看了之后,觉得有几点要注意:
1.像这样求连乘的,一段区间的东西,一定要先打表,之后在输入查询,否则几乎绝对超时,比如求这题可以换成H(t)/H(s-1),由此可以想到,连加的时候也可以打表,那就是H(t)-H(s-1)
2.看到大数相除,还取模,那就是逆元了,可以用 exgcd 或 费马小定理求,这里可以写个函数自己判断下m是不是素数,9973 显然是素数,所以就费马小定理。费马小定理,H(n)的逆元为H(n)MOD-2 % MOD,当MOD是素数时。
之后,理所当然,AC
#include <bits/stdc++.h>
using namespace std; const int INF=0x3f3f3f3f;
typedef long long LL;
#define PI(A) printf("%d\n",A)
#define SI(N) scanf("%d",&(N))
#define SII(N,M) scanf("%d%d",&(N),&(M))
#define cle(a,val) memset(a,(val),sizeof(a))
#define rep(i,b) for(int i=0;i<(b);i++)
#define Rep(i,a,b) for(int i=(a);i<=(b);i++)
#define reRep(i,a,b) for(int i=(a);i>=(b);i--)
const double EPS= 1e- ; /* ///////////////////////// C o d i n g S p a c e ///////////////////////// */ const int MAXN= + ; char str[MAXN];
int h[MAXN];
int N;
int M=; //快速幂模板
LL mod_pow(LL x,LL n,LL mod)
{
LL res=;
while(n>){
if (n&) res=res*x%mod;
x=x*x%mod;
n>>=;
}
return res;
} int main()
{
while(~SI(N))
{
int x,y;
scanf("%s",str);
h[]=;
//注意这是str[i]!='\0' 不是strlen(str) 如果换了 会超时,因为调用函数浪费时间,不信? 你自己试下,就知道了
for (int i=;str[i];i++)
{
h[i+]=h[i]*(str[i]-)%M;
}
while(N--)
{
SII(x,y);
printf("%lld\n",h[y]*mod_pow(h[x-],M-,M)%M);
}
}
return ;
}
做完这题,有个感悟,就是不管什么题,不求速度,只求质量,一定要搞懂,就算一周只看一个题,只要搞懂了,绝对比看100道,一道都没懂好。
在附赠一个测素数的代码:
#include <bits/stdc++.h>
using namespace std;
int N;
int main()
{
//PS:9973 1e9+7 都是素数
while(cin>>N)
{
bool fl=;
for (int i=;i<=sqrt(N);i++)
{
if (N%i==)
fl=;
}
puts(fl&&N>?"yes":"no");
} return ;
}
HDU - 5685 Problem A(逆元)的更多相关文章
- hdu 5685 Problem A (逆元)
题目 题意:H(s)=∏i≤len(s)i=1(Si−28) (mod 9973),求一个字符串 子串(a 位到 b 位的)的哈希值.这个公式便是求字符串哈希值的公式,(字符的哈希值 = 字符的ASC ...
- HDU 5685 Problem A | 快速幂+逆元
Problem A Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- hdu 5685 Problem A
Problem Description 度熊手上有一本字典存储了大量的单词,有一次,他把所有单词组成了一个很长很长的字符串.现在麻烦来了,他忘记了原来的字符串都是什么,神奇的是他竟然记得原来那些字符串 ...
- HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)
6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...
- HDU 5685:2016"百度之星" - 资格赛 Problem A
原文链接:https://www.dreamwings.cn/hdu5685/2637.html Problem A Time Limit: 2000/1000 MS (Java/Others) ...
- HDU 6333.Problem B. Harvest of Apples-组合数C(n,0)到C(n,m)求和-组合数学(逆元)+莫队 ((2018 Multi-University Training Contest 4 1002))
2018 Multi-University Training Contest 4 6333.Problem B. Harvest of Apples 题意很好懂,就是组合数求和. 官方题解: 我来叨叨 ...
- hdu 5685(逆元)
Problem A Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total S ...
- hdu 2669 Romantic (乘法逆元)
Romantic Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU 5976 数学,逆元
1.HDU 5976 Detachment 2.题意:给一个正整数x,把x拆分成多个正整数的和,这些数不能有重复,要使这些数的积尽可能的大,输出积. 3.总结:首先我们要把数拆得尽可能小,这样积才会更 ...
随机推荐
- 机器翻译 2010年NOIP全国联赛提高组
题目描述 Description 小晨的电脑上安装了一个机器翻译软件,他经常用这个软件来翻译英语文章. 这个翻译软件的原理很简单,它只是从头到尾,依次将每个英文单词用对应的中文含义 来替换.对于每个英 ...
- PHP 的 HMAC_SHA1算法 实现
根据RFC 2316(Report of the IAB,April 1998),HMAC(散列消息身份验证码: Hashed Message Authentication Code)以及IPSec被 ...
- 英语语法最终珍藏版笔记- 21it 用法小结
it 用法小结 it 在英语中的意思较多,用法较广,现总结如下. 一.it作句子的真正主语 1.it 指前面已经提到过的人或事物,有时指心目中的或成为问题的人或事物,作真正主语. 例如: What’s ...
- 最长不下降子序列的O(n^2)算法和O(nlogn)算法
一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...
- MySQL-python模块
1. Python 操作 Mysql 模块的安装 linux: pip install MySQL-python 或 yum -y install MySQL-python windows: exe ...
- PHP- 深入PHP、Redis连接
pconnect, phpredis中用于client连接server的api. The connection will not be closed on close or end of reques ...
- combobox select .change onSelect事件触发
我现在要完成的功能是:有两个下拉框,当地一个下拉框选择了第一个选项时,第二个下拉框不可用,否则就可用. 用了jQuery easyUI提供的onSelect方法.如下:js文件:$('#select1 ...
- c# 获取 webbrowser 完整 cookie
下面的代码实现的功能确实如标题所言,但要求是获取的是当前进程内的webbrowser,跨进程或引用的ShellWindows对象无效, 哎我本来两种情况都要用,只把前者代码先记下: internal ...
- 【Hadoop】搭建完全分布式的hadoop
博客已转移,请借一步说话! http://www.weixuehao.com/archives/577 下面博文已更新,请移步 ↑ 用于测试,我用4台虚拟机搭建成了hadoop结构 我用了两个台式机. ...
- Spring注解实例
public class ActivityAction extends CoreAction { private static final Logger log = Logger.getLogger( ...