2015-05-21 Created By BaoXinjian

一、摘要


以前只考虑 merge into 只是在特定场合下方便才使用的,今天才发现,merge into 竟然会比 update 在更新数据时有这么大的改进。

其实呢,merge into部分的update和update也没啥不同的,不同的地方在于使用merge into后执行计划变了。

merge方法是最简洁,效率最高的方式,在大数据量更新时优先使用这种方式。

1. 基本语法

merge into test1 using test2
on (test1.id = test2.id)
when matched then update
set test1.name = nvl2(test1.name,test2.name,test1.name);

update内联视图方式:使用这种方式必须在test2.id上有主键 (这里很好理解,必须保证每一个test1.id对应在test2里只有一条记录,如果test2中有多条对应的记录,怎么更新test1)

或者on (test1.id = test2.id, test1.name = test2.name ....),通过多栏位对比,确认唯一记录,类似Unique Index

2. 使用并行,加快大量数据更新:

merge /*+parallel(test1,4)*/ into test1 using test2
on (test1.id = test2.id)
when matched then update
set test1.name = nvl2(test1.name,test2.name,test1.name);

二、测试案例 - Update / Merge Into


1. 创建测试数据

create table test1 as select * from dba_objects where rownum<=10000;--10000条记录

create table test2 as select * from dba_objects--73056条记录

2. 直接Update时间和效率

SQL> alter system flush shared_pool;

System altered.

SQL> alter system flush buffer_cache;

System altered.

SQL> set linesize 400 pagesize 400
SQL> set autot trace
SQL> set timing on
SQL> update test1 t1
2 set t1.object_name = (select t2.object_name
3 from test2 t2
4 where t2.object_id = t1.object_id); 10000 rows updated. Elapsed: 00:06:33.35 Execution Plan
----------------------------------------------------------
0 UPDATE STATEMENT Optimizer=ALL_ROWS (Cost=2923252 Card=10011 Bytes=790869)
1 0 UPDATE OF 'TEST1'
2 1 TABLE ACCESS (FULL) OF 'TEST1' (TABLE) (Cost=40 Card=10011 Bytes=790869)
3 1 TABLE ACCESS (FULL) OF 'TEST2' (TABLE) (Cost=292 Card=772 Bytes=60988) Statistics
----------------------------------------------------------
430 recursive calls
11122 db block gets
15275257 consistent gets
1175 physical reads
4058752 redo size
520 bytes sent via SQL*Net to client
668 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
7 sorts (memory)
0 sorts (disk)
10000 rows processed

3. 通过Merge Into时间和效率

SQL> alter system flush shared_pool;

System altered.

Elapsed: 00:00:00.45
SQL> alter system flush buffer_cache; System altered. Elapsed: 00:00:00.71
SQL> merge into test1 t1
2 using test2 t2
3 on (t1.object_id = t2.object_id)
4 when matched then
5 update set t1.object_name = t2.object_name; 10000 rows merged. Elapsed: 00:00:00.92 Execution Plan
----------------------------------------------------------
0 MERGE STATEMENT Optimizer=ALL_ROWS (Cost=1243 Card=10011 Bytes=1321452)
1 0 MERGE OF 'TEST1'
2 1 VIEW
3 2 HASH JOIN (Cost=1243 Card=10011 Bytes=4264686)
4 3 TABLE ACCESS (FULL) OF 'TEST1' (TABLE) (Cost=40 Card=10011 Bytes=2192409)
5 3 TABLE ACCESS (FULL) OF 'TEST2' (TABLE) (Cost=292 Card=77163 Bytes=15972741) Statistics
----------------------------------------------------------
1224 recursive calls
10279 db block gets
1586 consistent gets
1191 physical reads
2803872 redo size
526 bytes sent via SQL*Net to client
634 bytes received via SQL*Net from client
3 SQL*Net roundtrips to/from client
12 sorts (memory)
0 sorts (disk)
10000 rows processed

aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAABQAAAATCAIAAAAf7rriAAABHklEQVQ4jc3Tv0sCcRjH8Wc4/wL9H4T0P3CpXYQcHQpuFIQayjvXQrnulhosHDpQsBZB8Q9wuWu1QVBcbMtNyaAm3y0e/fC4Lmvo4bO++D6fB74CLJdPm0X+MRaRn2HuowziDFNMVBFhajDvsHB4GYXBMQZxRikeVBHh0WDeDo+jKzz5gJ8dXjfAU4NZm4UbEse+4uC1qVYplSgU2Ntf4aHXeXrGLBjX65TLaEXyeTIZdrYjCskEIpLdRdMwTWybOxc/3GpxfsHpCUfH5HKk0xGF5JaHi1gm9jWuP3Ycbm+o1bAsDg9Q1U9YC8b9Pt0uzSZXl/LdrOHxmF6PTodGg0oFXY8oJLzOuveyf+f1vB8si17EDFj7zz5GyPwKvwECQrZ4yvBSdAAAAABJRU5ErkJggg==" alt="" />三、解析计划


1. 通过Update的解析计划

SQL> set autot off
SQL> update /*+gather_plan_statistics*/ test1 t1
2 set t1.object_name = (select t2.object_name
3 from test2 t2
4 where t2.object_id = t1.object_id); 10000 rows updated. Elapsed: 00:04:32.81
SQL> select * from table(dbms_xplan.display_cursor(null,null,'iostats')); PLAN_TABLE_OUTPUT
--------------------------------------------------------------------------------------------
SQL_ID c8qt9a54qgmqg, child number 0
-------------------------------------
update /*+gather_plan_statistics*/ test1 t1 set t1.object_name =
(select t2.object_name from test2 t2
where t2.object_id = t1.object_id) Plan hash value: 3883393169 --------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
--------------------------------------------------------------------------------------
| 0 | UPDATE STATEMENT | | 1 | | 0 |00:04:32.73 | 10M|
| 1 | UPDATE | TEST1 | 1 | | 0 |00:04:32.73 | 10M|
| 2 | TABLE ACCESS FULL| TEST1 | 1 | 10011 | 10000 |00:00:00.17 | 133 |
|* 3 | TABLE ACCESS FULL| TEST2 | 10000 | 772 | 10000 |00:04:31.51 | 10M|
-------------------------------------------------------------------------------------- Predicate Information (identified by operation id):
--------------------------------------------------- 3 - filter("T2"."OBJECT_ID"=:B1) Note
-----
- dynamic sampling used for this statement (level=2) 26 rows selected. Elapsed: 00:00:01.38

2. 通过Merge Into的解析计划

SQL> merge /*+gather_plan_statistics*/
2 into test1 t1
3 using test2 t2
4 on (t1.object_id = t2.object_id)
5 when matched then
6 update set t1.object_name = t2.object_name; 10000 rows merged. Elapsed: 00:00:00.52
SQL> select * from table(dbms_xplan.display_cursor(null,null,'iostats')); PLAN_TABLE_OUTPUT
-------------------------------------------------------------------------------------------
SQL_ID 9n4tc6tvwaj9c, child number 0
-------------------------------------
merge /*+gather_plan_statistics*/ into test1 t1 using test2 t2 on
(t1.object_id = t2.object_id) when matched then update set
t1.object_name = t2.object_name Plan hash value: 818823782 ----------------------------------------------------------------------------------------
| Id | Operation | Name | Starts | E-Rows | A-Rows | A-Time | Buffers |
----------------------------------------------------------------------------------------
| 0 | MERGE STATEMENT | | 1 | | 0 |00:00:00.47 | 11458 |
| 1 | MERGE | TEST1 | 1 | | 0 |00:00:00.47 | 11458 |
| 2 | VIEW | | 1 | | 10000 |00:00:00.33 | 1179 |
|* 3 | HASH JOIN | | 1 | 10011 | 10000 |00:00:00.25 | 1179 |
| 4 | TABLE ACCESS FULL| TEST1 | 1 | 10011 | 10000 |00:00:00.08 | 133 |
| 5 | TABLE ACCESS FULL| TEST2 | 1 | 77163 | 73056 |00:00:00.26 | 1046 |
---------------------------------------------------------------------------------------- Predicate Information (identified by operation id):
--------------------------------------------------- 3 - access("T1"."OBJECT_ID"="T2"."OBJECT_ID") Note
-----
- dynamic sampling used for this statement (level=2) 28 rows selected. Elapsed: 00:00:00.15

四、结果分析


1. 测试结果对比:update和merge into 都更新1w条记录,

update耗时6分钟,逻辑读消耗15275257;

merge into 耗时6秒钟,消耗逻辑读1586,相差太大了。

2. 其实看着执行计划,这个结果也很容易理解:

update采用的类似nested loop的方式,对更新的每一行,都会对查询的表扫描一次;

merge into这里选择的是hash join,则针对每张表都是做了一次 full table scan,对每张表都只是扫描一次。

3. Oracle官方建议,在大数据更新过程中,也是通过使用Merge Into代替Update

Thanks and Regards

参考: http://blog.csdn.net/xiexbb/article/details/4242063

PLSQL_性能优化系列17_Oracle Merge Into和Update更新效率的更多相关文章

  1. PLSQL_性能优化系列14_Oracle High Water Level高水位分析

    2014-10-04 Created By BaoXinjian 一.摘要 PLSQL_性能优化系列14_Oracle High Water Level高水位分析 高水位线好比水库中储水的水位线,用于 ...

  2. PLSQL_性能优化系列16_Oracle Tuning Analyze优化分析

    2014-12-23 Created By BaoXinjian

  3. PLSQL_性能优化系列01_Oracle Index索引

    2014-06-01 Created By BaoXinjian

  4. PLSQL_性能优化系列15_Oracle Explain Plan解析计划解读

    2014-12-19 Created By BaoXinjian

  5. PLSQL_性能优化系列05_Oracle Hint提示

    2014-06-20 Created By BaoXinjian

  6. PLSQL_性能优化系列02_Oracle Join关联

    2014-09-25 Created By BaoXinjian

  7. PLSQL_性能优化系列19_Oracle Explain Plan解析计划通过Profile绑定

    20150529 Created By BaoXinjian

  8. PLSQL_性能优化系列12_Oracle Index Anaylsis索引分析

    2014-10-04 Created By BaoXinjian

  9. PLSQL_性能优化系列08_Oracle Insert / Direct Insert性能优化

    2014-09-25 Created By BaoXinjian

随机推荐

  1. mysql 5.5及以前版本的编码问题“Incorrect string value: '\xE6\x9B\xB9\xE5\x86\xAC...' for column 'realname' at row 1”

    遇到这个问题,所有的编码都设为utf8了,还是没有用,各种乱码,后来发现这是mysql自己的问题,它在5.5及之前的版本只支持3字节的utf8编码,出现4字节的utf编码时出现错误,参考: http: ...

  2. Andoid 利用ndk-stack定位崩溃代码

    Android NDK自从版本R6开始, 提供了一个工具ndk-stack( 在目录{ndk_root}/中 ). 这个工具能自动分析dump下来的crash log, 将崩溃时的调用内存地址和c++ ...

  3. kuangbin_ShortPath J (POJ 1511)

    其实虽然一开始有被这个题的8000MS 和 256MB限制又被吓到 但是严格来说跟之前的POJ 3268是一样的做法只是数据大了点 但是问题就出在数据大了点上 其实严格来说也不大 1e6 数组加起来大 ...

  4. 看完com本质论第一章

    class IUnKnown { virtual void QueryInterface(REFIID riid,IUnknown** ppv)=0; virtual void addref()=0; ...

  5. python_day10_IO多路复用

    一.python小知识 1.python中无模块作用域 Java /c# 不可以, Python.javascript 可以 for i in range(10): name = i print(i) ...

  6. 015. asp.net实现简易聊天室

    通过Application和Session来实现简单的聊天室和在线用户数统计 Global.asax代码: <%@ Application Language="C#" %&g ...

  7. P1003 越野跑【tyvj】

    /*=========================================================== P1003 越野跑 描述 Description 为了能在下一次跑步比赛中有 ...

  8. XMLHttpRequest 对象

    XMLHttpRequest 对象 XML XSLTXML 解析器XMLHttpRequest 对象用于在后台与服务器交换数据. 什么是 XMLHttpRequest 对象? XMLHttpReque ...

  9. 移动端H5页面的设计稿尺寸大小规范-转载自http://www.chinaz.com/design/2015/1103/465670.shtml

    机屏幕尺寸,设计稿应该按照哪一个尺寸作为标准尺寸.现在已经有2K分辨率的手机屏幕了,设计稿是不是也要把宽高跟着最大分辨率来设计.显然不是. 请注意:(以下所有讨论内容和规范均将viewport设定为c ...

  10. mysql批量更新

    UPDATE ta INNER JOIN tb ON ta.id=tb.id SET ta.col1=tb.col1, ta.col2=tb.col2 以上代码用来批量更新mysql中的记录