题目背景

在商店中,每一种商品都有一个价格(用整数表示)。例如,一朵花的价格是 2 zorkmids (z),而一个花瓶的价格是 5z 。为了吸引更多的顾客,商店举行了促销活动。

题目描述

促销活动把一个或多个商品组合起来降价销售,例如:

三朵花的价格是 5z 而不是 6z, 两个花瓶和一朵花的价格是 10z 而不是 12z。 编写一个程序,计算顾客购买一定商品的花费,尽量利用优惠使花费最少。尽管有时候添加其他商品可以获得更少的花费,但是你不能这么做。

对于上面的商品信息,购买三朵花和两个花瓶的最少花费的方案是:以优惠价购买两个花瓶和一朵花(10z),以原价购买两朵花(4z)。

输入输出格式

输入格式:

输入文件包括一些商店提供的优惠信息,接着是购物清单。(最多有5种商品)

第一行 优惠方案的种类数(0 <= s <= 99)。

第二行..第s+1 行 每一行都用几个整数来表示一种优惠方式。第一个整数 n (1 <= n <= 5),表示这种优惠方式由 n 种商品组成。后面 n 对整数 c 和 k 表示 k (1 <= k <= 5)个编号为 c (1 <= c <= 999)的商品共同构成这种优惠,最后的整数 p 表示这种优惠的优惠价(1 <= p <= 9999)。优惠价总是比原价低。

第 s+2 行 这一行有一个整数 b (0 <= b <= 5),表示需要购买 b 种不同的商品。

第 s+3 行..第 s+b+2 行 这 b 行中的每一行包括三个整数:c,k,p。 c 表示唯一的商品编号(1 <= c <= 999),k 表示需要购买的 c 商品的数量(1 <= k <= 5)。p 表示 c 商品的原价(1 <= p <= 999)。最多购买 5*5=25 个商品。

输出格式:

只有一行,输出一个整数:购买这些物品的最低价格。

商品的种类不超过五种,每种商品的个数不超过五个,那么可以设dp(a1,a2,a3,a4,a5)为五种商品分别买a1,a2,a3,a4,a5种时的最小花销(对于所有数据可以假设都是有五种商品,只是有的商品需求量是0而已),边界自然就是当五个数都是0的时候,花销为0,对于每一种情况的计算可以依次尝试枚举所有的优惠方案(如果数量够的话),再枚举单个购买的方案,这样推到下一层,由这个思路很容易得到递推公式,写记忆化搜索即可,还有一点是商品的编号不是1~5,而是1000内的5的整数,可以写一个ID函数进行映射(我的习惯),剩下的就是注意细节就OK啦

 #include<iostream>
 #include<cstring>
 #include<vector>
 using namespace std;
 struct CH{
   ];
   int pr;
 };
 ][][][][],v[][][][][];
 ],counter=,yj[],need[];
 int S,b;
 vector<CH> ch;
 int A(int a1,int a2,int a3,int a4,int a5){
   if(v[a1][a2][a3][a4][a5]) return dp[a1][a2][a3][a4][a5];
   v[a1][a2][a3][a4][a5]=;
   int& ans=dp[a1][a2][a3][a4][a5];
   ;
   ans=<<;
   ;i<S;i++){
     ]&&a2>=ch[i].s[]&&a3>=ch[i].s[]&&a4>=ch[i].s[]&&a5>=ch[i].s[])
       ans=min(ans,A(a1-ch[i].s[],a2-ch[i].s[],a3-ch[i].s[],
         a4-ch[i].s[],a5-ch[i].s[])+ch[i].pr);
   }
   ,a2,a3,a4,a5)+yj[]);
   ,a3,a4,a5)+yj[]);
   ,a4,a5)+yj[]);
   ,a5)+yj[]);
   )+yj[]);
   return ans;
 }
 int ID(int x)
 {
   if(book[x]) return book[x];
   return book[x]=++counter;
 }
 int main()
 {
   memset(book,,sizeof(book));
   int n,c,k;
   cin>>S;
   ;i<=S;i++){
     cin>>n;
     CH da;
     ;i<=;i++) da.s[i]=;
     ;j<=n;j++){
       cin>>c>>k;da.s[ID(c)]=k;
     }
     cin>>da.pr;
     ch.push_back(da);
   }
   cin>>b;
   memset(yj,,sizeof(yj));
   memset(need,,sizeof(need));
   ;i<=b;i++){
     int c,k,p;
     cin>>c>>k>>p;
     yj[ID(c)]=p;
     need[ID(c)]=k;
   }
   cout<<A(need[],need[],need[],need[],need[]);
   ;
 }

USACO Section 3.3 商店购物 Shopping Offers的更多相关文章

  1. 洛谷P2732 商店购物 Shopping Offers

    P2732 商店购物 Shopping Offers 23通过 41提交 题目提供者该用户不存在 标签USACO 难度提高+/省选- 提交  讨论  题解 最新讨论 暂时没有讨论 题目背景 在商店中, ...

  2. 商店购物 (shopping.c/cpp/pas)

    1.商店购物 (shopping.c/cpp/pas) 在滨海市开着 n 家商店,编号依次为 1 到 n,其中编号为 1 到 m 的商店有日消费量上 限,第 i 家商店的日消费量上限为 wi. 海霸王 ...

  3. USACO Training 3.3 商店购物 By cellur925

    题目传送门 这道题有着浓浓的背包气氛.所以我们可以这样想:可以把每个优惠方案都当做一个物品,每个单买所需要花的钱也当做一个物品.(也就是代码中的p结构体数组)而且基于此题的环境,这题是一个完全背包.另 ...

  4. USACO 3.3 Shopping Offers

    Shopping OffersIOI'95 In a certain shop, each kind of product has an integer price. For example, the ...

  5. 【Bzoj2260】【Bzoj4349】商店购物 & 最小树形图

    目录 List Bzoj 2260 商店购物 Description Input Output Sample Input Sample Output Bzoj 4349 最小树形图 Descripti ...

  6. Leetcode之深度优先搜索&回溯专题-638. 大礼包(Shopping Offers)

    Leetcode之深度优先搜索&回溯专题-638. 大礼包(Shopping Offers) 深度优先搜索的解题详细介绍,点击 在LeetCode商店中, 有许多在售的物品. 然而,也有一些大 ...

  7. poj 1170 Shopping Offers

    Shopping Offers Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4696   Accepted: 1967 D ...

  8. LeetCode 638 Shopping Offers

    题目链接: LeetCode 638 Shopping Offers 题解 dynamic programing 需要用到进制转换来表示状态,或者可以直接用一个vector来保存状态. 代码 1.未优 ...

  9. HDU 1170 Shopping Offers 离散+状态压缩+完全背包

    题目链接: http://poj.org/problem?id=1170 Shopping Offers Time Limit: 1000MSMemory Limit: 10000K 问题描述 In ...

随机推荐

  1. 关于mysql数据库在输入密码后,滴的一声直接退出界面的解决办法

    转自:http://www.2cto.com/database/201412/361751.html 网上搜索到的解决办法: 1.找到mysql安装目录下的bin目录路径.2.打开cmd,进入到bin ...

  2. 黄聪:VS2010开发如何在c#中使用Ctrl、Alt、Tab等全局组合快捷键

    1.新建一个类 HotkeyHelper  using System; using System.Runtime.InteropServices; using System.Windows.Forms ...

  3. Linux大文件传输(转)

    我们经常需要在机器之间传输文件.比如备份,复制数据等等.这个是很常见,也是很简单的.用scp或者rsync就能很好的完成任务.但是如果文件很大,需要占用一些传输时间的时候,怎样又快又好地完成任务就很重 ...

  4. (C#) 多线程修改布尔值, volatile

    参考: https://msdn.microsoft.com/en-us/library/x13ttww7(VS.80).aspx http://stackoverflow.com/questions ...

  5. solr基于tomcat增加主界面登录权限

    tomcat-user.xml增加下面标签(用户名,密码,角色)<user username="admin" password="new-password" ...

  6. NeHe OpenGL教程 第十课:3D世界

    转自[翻译]NeHe OpenGL 教程 前言 声明,此 NeHe OpenGL教程系列文章由51博客yarin翻译(2010-08-19),本博客为转载并稍加整理与修改.对NeHe的OpenGL管线 ...

  7. windows环境下 生成git公钥和私钥

    windows环境下 生成公钥和私钥 上传代码到远程仓库的时候需要秘钥进行验证是否本人上传的.打开Git目录下的Git Bash 输入ssh-keygen,回车 可直接不输入路径,使用默认路径(c/U ...

  8. 自己动手写ORM

    http://blog.csdn.net/sundacheng1989/article/category/1350100

  9. heredoc和nowdoc的区别

    heredoc使用 <<< EOT 的标示符,而nowdoc使用 <<< 'EOT' 这样的标示符,其中nowdoc是PHP5.3引进的新技术,它包含了heredo ...

  10. CentOS 6.5 更新163源(转载)

    From:http://www.cnblogs.com/buffer/p/3426908.html 众所周知,Centos 有个很方便的软件安装工具  yum,但是默认安装完centos,系统里使用的 ...