BUY LOW, BUY LOWER_最长下降子序列
Description
"Buy low; buy lower"
Each time you buy a stock, you must purchase it at a lower price than the previous time you bought it. The more times you buy at a lower price than before, the better! Your goal is to see how many times you can continue purchasing at ever lower prices.
You will be given the daily selling prices of a stock (positive 16-bit integers) over a period of time. You can choose to buy stock on any of the days. Each time you choose to buy, the price must be strictly lower than the previous time you bought stock. Write a program which identifies which days you should buy stock in order to maximize the number of times you buy.
Here is a list of stock prices:
Day 1 2 3 4 5 6 7 8 9 10 11 12
Price 68 69 54 64 68 64 70 67 78 62 98 87
The best investor (by this problem, anyway) can buy at most four times if each purchase is lower then the previous purchase. One four day sequence (there might be others) of acceptable buys is:
Day 2 5 6 10
Price 69 68 64 62
Input
* Lines 2..etc: A series of N space-separated integers, ten per line except the final line which might have fewer integers.
Output
* The length of the longest sequence of decreasing prices
* The number of sequences that have this length (guaranteed to fit in 31 bits)
In counting the number of solutions, two potential solutions are considered the same (and would only count as one solution) if they repeat the same string of decreasing prices, that is, if they "look the same" when the successive prices are compared. Thus, two different sequence of "buy" days could produce the same string of decreasing prices and be counted as only a single solution.
Sample Input
12
68 69 54 64 68 64 70 67 78 62
98 87
Sample Output
4 2
【题意】 求最长下降子序列和长度及个数
#include<iostream>
#include<stdio.h>
#include<string.h>
using namespace std;
const int N=;
const int inf=0x7777777;
int dp[N],a[N],num[N];
void get_ans(int n)
{
int ans=;
for(int i=; i<=n; i++)
{
dp[i]=;
num[i]=;
}
for (int i=;i<=n; i++)
{
for (int j=;j<i;j++)
{
if (a[i]<a[j])
{
dp[i]= max(dp[i], dp[j]+);
}
}
}
for (int i=; i<=n; i++)
if (dp[i]==) num[i]=;
for (int i=; i<=n; i++)
{
for (int j=i-;j>; j--)
{
if (a[j] > a[i])
{
if (dp[j]+ == dp[i])//dp[i]=dp[j]+1的话,两者位于同一个下降子序列,num[i]加上num[j];
{
num[i] += num[j];
}
}
if (a[j]==a[i])
{
if (dp[i]==) num[i]=;//如果搜索到一个相同的数后仍没有找到符合要求的序列,则为了避免重复赋值为0 break;
}
} }
}
int main()
{
int n;
while(~scanf("%d",&n))
{
for(int i=; i<=n; i++)
{
scanf("%d",&a[i]);
}
get_ans(n);
int w=;
for(int i=;i<=n;i++)
{
if(dp[i]>w) w=dp[i];
}
int cnt=; for(int i=; i<=n; i++)
{
if(dp[i]==w)
{
cnt+=num[i];
}
}
printf("%d %d\n",w,cnt);
}
return ;
}
BUY LOW, BUY LOWER_最长下降子序列的更多相关文章
- USACO Section 4.3 Buy low,Buy lower(LIS)
第一眼看到题目,感觉水水的,不就是最长下降子序列嘛!然后写……就呵呵了..要判重,还要高精度……判重我是在计算中加入各种判断.这道题比看上去麻烦一点,但其实还好吧.. #include<cstd ...
- POJ-1952 BUY LOW, BUY LOWER(线性DP)
BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 9244 Accepted: 3226 De ...
- USACO 4.3 Buy Low, Buy Lower
Buy Low, Buy Lower The advice to "buy low" is half the formula to success in the stock mar ...
- poj1952 BUY LOW, BUY LOWER【线性DP】【输出方案数】
BUY LOW, BUY LOWER Time Limit: 1000MS Memory Limit: 30000K Total Submissions:11148 Accepted: 392 ...
- 洛谷P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower
P2687 [USACO4.3]逢低吸纳Buy Low, Buy Lower 题目描述 “逢低吸纳”是炒股的一条成功秘诀.如果你想成为一个成功的投资者,就要遵守这条秘诀: "逢低吸纳,越低越 ...
- [POJ1952]BUY LOW, BUY LOWER
题目描述 Description The advice to "buy low" is half the formula to success in the bovine stoc ...
- Buy Low, Buy Lower
Buy Low, Buy Lower 给出一个长度为N序列\(\{a_i\}\),询问最长的严格下降子序列,以及这样的序列的个数,\(1 <= N <= 5000\). 解 显然我们可以很 ...
- POJ 1952 BUY LOW, BUY LOWER 动态规划题解
Description The advice to "buy low" is half the formula to success in the bovine stock mar ...
- 最长下降子序列O(n^2)及O(n*log(n))解法
求最长下降子序列和LIS基本思路是完全一样的,都是很经典的DP题目. 问题大都类似于 有一个序列 a1,a2,a3...ak..an,求其最长下降子序列(或者求其最长不下降子序列)的长度. 以最长下降 ...
随机推荐
- nginx 搭配 lua
据说lua的效率高,公司要求,路过学习下.哎 安装 需要最新版的Nginx,LuaJIT,ngx_devel_kit,ngx_lua等安装文件. 安装Lua或者LuaJIT都是可以的,但是出于效率的考 ...
- css清除浮动的处理方法
根据<精彩绝伦的css> <!DOCTYPE html> <html> <head> <meta charset="utf-8" ...
- Android: Intent实现活动之间的交互
Intent的作用:是Android中各个组件直接交互的一种重要方式,且利用Intent可以启动Activity.Service以及Broadcast Receiver. Intent的创建:显示和隐 ...
- PHP可变长函数方法介绍
1.三个重要函数 func_num_args() 返回实参个数 func_get_arg(i) 返回某个实参的值 func_get_args() 以数组的形式返回实参 ...
- 抓包工具tshark使用备忘
抓包命令行工具tshark可以用于自定制,相比GUI工具可以实现一些自动化,譬如把某些关注的数据抓起下来存放到文本中,然后再分析输出. demo: std::string deco ...
- Hadoop集群中添加硬盘
Hadoop工作节点扩展硬盘空间 接到老板任务,Hadoop集群中硬盘空间不够用,要求加一台机器到Hadoop集群,并且每台机器在原有基础上加一块2T硬盘,老板给力啊,哈哈. 这些我把完成这项任务的步 ...
- java 面向对象编程--第十章 接口
1. 接口可以看做是抽象类的特例.抽象类中可以定义抽象方法,也可以定义具体方法.但接口只能定义抽象方法.所有接口可以看作行为的抽象.定义接口使用关键字interface,实现接口使用关键字imple ...
- Shell脚本:使用rsync备份文件/目录
本文我们介绍一个shell脚本,用来使用rsync命令将你本地Linux机器上的文件/目录备份到远程Linux服务器上.使用该脚本会以交互的方式实施备份,你需要提供远程备份服务器的主机名/ip地址和文 ...
- P142-1
P142-1.1 登录页面 <%@ page language="java" contentType="text/html; charset=UTF-8" ...
- bzoj 2049: [Sdoi2008]Cave 洞穴勘测
#include<cstdio> #include<iostream> using namespace std; ][],n,m,fa[],st[]; ]; bool isro ...