uva----(10794) A Different Task
| A Different Task |

The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefly the problem is to transfer all the disks from peg-A to peg-C using peg-B as intermediate one in such a way that at no stage a larger disk is above a smaller disk. Normally, we want the minimum number of moves required for this task. The problem is used as an ideal example for learning recursion. It is so well studied that one can find the sequence of moves for smaller number of disks such as 3 or 4. A trivial computer program can find the case of large number of disks also.
Here we have made your task little bit difficult by making the problem more flexible. Here the disks can be in any peg initially.

If more than one disk is in a certain peg, then they will be in a valid arrangement (larger disk will not be on smaller ones). We will give you two such arrangements of disks. You will have to find out the minimum number of moves, which will transform the first arrangement into the second one. Of course you always have to maintain the constraint that smaller disks must be upon the larger ones.
Input
The input file contains at most 100 test cases. Each test case starts with a positive integer N ( 1
N
60), which means the number of disks. You will be given the arrangements in next two lines. Each arrangement will be represented by N integers, which are 1, 2 or 3. If the i-th ( 1
i
N) integer is 1, you should consider that i-th disk is on Peg-A. Input is terminated by N = 0. This case should not be processed.
Output
Output of each test case should consist of a line starting with `Case #: ' where # is the test case number. It should be followed by the minimum number of moves as specified in the problem statement.
Sample Input
3
1 1 1
2 2 2
3
1 2 3
3 2 1
4
1 1 1 1
1 1 1 1
0
Sample Output
Case 1: 7
Case 2: 3
Case 3: 0
代码:
#include<cstdio>
const int maxn =;
int n,start[maxn],finish[maxn];
long long Func(int *p,int i,int final)
{
if(i==) return ;
if(p[i]==final) return Func(p,i-,final);
return Func(p,i-,-p[i]-final)+(1LL<<(i-));
}
int main()
{
int kase=;
while(scanf("%d",&n)==&&n)
{
for(int i=;i<=n;i++)
scanf("%d",&start[i]);
for(int i=;i<=n;i++)
scanf("%d",&finish[i]);
int k=n;
while(k>= && start[k]==finish[k])k--; long long ans=;
if(k>=)
{
int other=-start[k]-finish[k];
ans =Func(start,k-,other)+Func(finish,k-,other)+;
}
printf("Case %d: %lld\n",++kase,ans);
}
}
Problem setter: Md. Kamruzzaman
Special Thanks: Derek Kisman (Alternate Solution), Shahriar Manzoor (Picture Drawing)
Miguel Revilla 2004-12-10
uva----(10794) A Different Task的更多相关文章
- 二分图最大匹配(匈牙利算法) UVA 670 The dog task
题目传送门 /* 题意:bob按照指定顺序行走,他的狗可以在他到达下一个点之前到一个景点并及时返回,问狗最多能走多少个景点 匈牙利算法:按照狗能否顺利到一个景点分为两个集合,套个模板 */ #incl ...
- UVA 10795 A Different Task(汉诺塔 递归))
A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Briefl ...
- UVA 10795 - A Different Task(递归)
A Different Task The (Three peg) Tower of Hanoi problem is a popular one in computer science. Brie ...
- UVa 10795 - A Different Task 对称, 中间状态, 数位DP 难度: 3
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVa 10795 - A Different Task
题目大意:给出n,表示说有n个大小不同的盘子,然后再给出每个盘子的初始位置和目标位置,要求计算出最少的步数使得每个盘子都移动到它的目标位置. 分析: 首先找最大不在目标柱子上的盘子K,因为如果最大的 ...
- 【汉诺塔问题】UVa 10795 - A Different Task
[经典汉诺塔问题] 汉诺(Hanoi)塔问题:古代有一个梵塔,塔内有三个座A.B.C,A座上有64个盘子,盘子大小不等,大的在下,小的在上.有一个和尚想把这64个盘子从A座移到B座,但每次只能允许移动 ...
- UVA 10795 A Different Task(模拟)
题目链接:https://vjudge.net/problem/UVA-10795 一道比较有思维含量的一道题: 注意一种分治的思想和“除了柱子x和柱子y之外的那个柱子”编号的问题. 首先在初始局面和 ...
- uva 11728 - Alternate Task(数论)
版权声明:本文为博主原创文章,未经博主同意不得转载. https://blog.csdn.net/u011328934/article/details/36409469 option=com_onli ...
- UVA 11728 - Alternate Task (数论)
Uva 11728 - Alternate Task 题目链接 题意:给定一个因子和.求出相应是哪个数字 思路:数字不可能大于因子和,对于每一个数字去算出因子和,然后记录下来就可以 代码: #incl ...
- uva 11728 Alternate Task
vjudge 上题目链接:uva 11728 其实是个数论水题,直接打表就行: #include<cstdio> #include<algorithm> using names ...
随机推荐
- django 简单的邮件系统
django邮件系统 Django发送邮件官方中文文档 总结如下: 1.首先这份文档看三两遍是不行的,很多东西再看一遍就通顺了. 2.send_mail().send_mass_mail()都是对Em ...
- C# WPF MVVM 实战 – 4 - 善用 IValueConverter
IValueConverter,做 WPF 的都应该接触过,把值换成 Visibility .Margin 等等是最常见的例子,也有很多很好的博文解释过用法.本文只是解释一下,MVVM 中一些情景. ...
- Servlet技术
Java Applet和Java Servlet都有一个共同特点: 它们都不是独立的应用程序,都没有main( )方法: 它们都不是由用户或者程序员直接调用,而是生存在容器中,由容器管理,Applet ...
- Python基础学习笔记(十)日期Calendar和时间Timer
参考资料: 1. <Python基础教程> 2. http://www.runoob.com/python/python-date-time.html 3. http://www.liao ...
- HDU 5430 Reflect(欧拉函数)
题目: http://acm.hdu.edu.cn/showproblem.php?pid=5430 从镜面材质的圆上一点发出一道光线反射NNN次后首次回到起点. 问本质不同的发射的方案数. 输入描述 ...
- JAVA中对Cookie的操作
(1)往 Cookie 中存值: <%@page import="javax.xml.ws.Response"%> <%@ page language=" ...
- iOS - Swift Set 集合
前言 Set:集合 public struct Set<Element : Hashable> : Hashable, CollectionType, ArrayLiteralConver ...
- sciencesoftware科学软件
软件名称 软件分类 二级分类 更新日期 下载 GMS(Groundwater Modeling Solution) 10 地球地理软件 水资源 2014-09-28 下载 Data Desk 7 经济 ...
- Android alertdialog实现确认退出
package com.example.alertdialog; import android.os.Bundle; import android.app.Activity; import andro ...
- git 命令行操作
Git是一款免费.开源的分布式版本控制系统,用于敏捷高效地处理任何或小或大的项目 这里说一下在命令行对git进行操作 git init [在本地初始化一个git库] //当你的git服务器里面已经有文 ...