刚发现Bzoj有Noip的题目,只会换教室这道题.....

Bzoj 题面:Bzoj 4720

Luogu题目:P1850 换教室

大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大概是自己比较有成就感的题目(我才不会告诉你们,我这个题因为const int 挂了)

期望的线性性质:和的期望 = 期望的和.

期望\(E(x) = \sum_iP_i*W_i\)

那么这个题的期望就是\(L * P_i\)长度乘以概率.

知道期望的性质及期望,下面就是动态规划的部分.

设置状态:\(f[i][j][0/1]\)表示前i个教室,已经申请了j个教室,0表示这个时间段要去\(c_i\),1表示这个时间段要去\(d_i\)

之后开始想转移方程:

一. \(f[i][j][0]\)

  • 上一个教室不参加申请.
  • 上一个教室参加申请.
  • 上一个教室申请失败
  • 上一个教室申请成功

二.\(f[i][j][1]\)

  • 这个教室不参加申请
  • 这个教室申请失败
  • 这个教室申请成功
  • 这个教室参加申请
  • 这个教室申请失败

    上个教室申请成功

    上个教室申请失败
  • 这个教室申请成功

    上个教室申请成功

    上个教室申请失败
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std; const int maxT = 2000 + 7;
const int maxM = 90000 + 7;
const int maxN = 300 + 7; int c[maxT],d[maxT],dis[maxN][maxN];
double k[maxT];
double E[maxT][maxT][2]; inline int read() {
int x = 0,E = 1;char c = getchar();
while(c < '0' || c > '9') {if(c == '-')E = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * E;
} int main() {
int n = read() ,m = read(),v = read(),e = read();
for(int i = 1;i <= n;++ i) c[i] = read();
for(int i = 1;i <= n;++ i) d[i] = read();
for(int i = 1;i <= n;++ i) cin >> k[i];
int u,g,w;
for(int i = 1;i <= v;++ i)
for(int j = 1;j < i;++ j)
dis[i][j] = dis[j][i] = 999999999;
for(int i = 1;i <= e;++ i) {
u = read(),g = read(),w = read();
dis[g][u] = dis[u][g] = min(dis[u][g],w);
}
for(int k = 1;k <= v;++ k)
for(int i = 1;i <= v;++ i)
for(int j = 1;j <= v;++ j)
if(dis[i][k] + dis[k][j] < dis[i][j])
dis[i][j] = dis[j][i] = dis[i][k] + dis[k][j];
for(int i = 1;i <= n;++ i)
for(int j = 0;j <= m;++ j)
E[i][j][0] = E[i][j][1] = 999999999;
E[1][1][1] = E[1][0][0] = 0;
for(int i = 2;i <= n;++ i) {
E[i][0][0] = E[i - 1][0][0] + dis[c[i - 1]][c[i]];
for(int j = 1;j <= min(i,m);++ j) {
E[i][j][0] = min(E[i - 1][j][1] + k[i - 1] * dis[d[i - 1]][c[i]] + (1 - k[i - 1]) * dis[c[i - 1]][c[i]],E[i - 1][j][0] + dis[c[i - 1]][c[i]]);
E[i][j][1] = min(E[i - 1][j - 1][1] + k[i - 1] * k[i] * dis[d[i - 1]][d[i]] + k[i - 1] * (1 - k[i]) * dis[d[i - 1]][c[i]] + (1 - k[i - 1]) * k[i] * dis[c[i - 1]][d[i]] + (1 - k[i - 1]) * (1 - k[i]) * dis[c[i - 1]][c[i]],E[i - 1][j - 1][0] + k[i] * dis[c[i - 1]][d[i]] + (1 - k[i]) * dis[c[i - 1]][c[i]]);
}
}
double minn = 9999999999;
for(int i = 0;i <= m;++ i) minn = min(min(E[n][i][1],E[n][i][0]),minn);
printf("%.2lf\n", minn);
return 0;
}

Bzoj 4720 换教室 (期望DP)的更多相关文章

  1. 换教室(期望+DP)

    换教室(期望+DP) \(dp(i,j,1/0)\)表示第\(i\)节课,申请了\(j\)次调换,这节课\(1/0\)调换. 换教室 转移的时候考虑: 上次没申请 这次也没申请 加上\(dis(fr[ ...

  2. bzoj4720: [Noip2016]换教室(期望dp)

    4720: [Noip2016]换教室 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 1294  Solved: 698[Submit][Status ...

  3. 【bzoj4720】[NOIP2016]换教室 期望dp

    题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...

  4. 【BZOJ4720】【NOIP2016】换教室 [期望DP]

    换教室 Time Limit: 20 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行四个整数n,m,v ...

  5. 【bzoj4720】[Noip2016]换教室 期望dp+最短路

    Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的 ...

  6. [BZOJ 4720] 换教室

    Link: BZOJ 4720 传送门 Solution: 2016年$NOIP$考的一道语文题 题面虽长,但思路并不难想 对于这类期望问题,大多数时候都用期望$dp$来解决 根据询问:在$n$个时间 ...

  7. Luogu P1850 换教室(期望dp)

    P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...

  8. P1850 换教室 期望dp

    P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...

  9. Luogu P1850 [NOIp2016提高组]换教室 | 期望dp

    题目链接 思路: <1>概率与期望期望=情况①的值*情况①的概率+情况②的值*情况②的概率+--+情况n的值*情况n的概率举个例子,抛一个骰子,每一面朝上的概率都是1/6,则这一个骰子落地 ...

随机推荐

  1. Elasticsearch学习记录(分布式的特性)

    Elasticsearch学习记录(分布式的特性) 分布式的特性 我们提到Elasticsearch可以扩展到上百(甚至上千)的服务器来处理PB级的数据.然而我们的例子只给出了一些使用Elastics ...

  2. 用shell脚本监控MySQL主从同步

    企业面试题1:(生产实战案例):监控MySQL主从同步是否异常,如果异常,则发送短信或者邮件给管理员.提示:如果没主从同步环境,可以用下面文本放到文件里读取来模拟:阶段1:开发一个守护进程脚本每30秒 ...

  3. STM32 精确输出PWM脉冲数控制电机(转)

    STM32 精确输出PWM脉冲数控制电机 发脉冲两种目的1)速度控制2)位置控制 速度控制目的和模拟量一样,没有什么需要关注的地方发送脉冲方式为PWM,速率稳定而且资源占用少 stm32位置控制需要获 ...

  4. Java | 基础归纳 | trim()

    trim() 方法用于删除字符串的头尾空白符. 一般可以用来判断空白字符串的长度 String mName = “ ”: if(mName == null || mName.trim().length ...

  5. 8. 字符串转换整数 (atoi)

    8. 字符串转换整数 (atoi) 方法一 import re import math class Solution(object): def myAtoi(self, str): "&qu ...

  6. 关于vue的源码调试

    一直看源码都是硬生生的看, 其实, 还是感觉调试起来会看的比较舒服. GitHub把vue的源码下载下来 npm install && npm run dev 在example中新建一 ...

  7. eclipse打开jsp的方式怎么设置成默认

    https://jingyan.baidu.com/article/4ae03de34137be3eff9e6b93.html

  8. eShopOnContainers 是一个基于微服务的.NET Core示例框架

    找到一个好的示例框架很难,但不是不可能.大多数是小型Todo风格的应用程序,通常基于SimpleCRUD.值得庆幸的是,Microsoft已经为eShopOnContainers创建了一个基于微服务的 ...

  9. 106 Construct Binary Tree from Inorder and Postorder Traversal 从中序与后序遍历序列构造二叉树

    给定一棵树的中序遍历与后序遍历,依据此构造二叉树.注意:你可以假设树中没有重复的元素.例如,给出中序遍历 = [9,3,15,20,7]后序遍历 = [9,15,7,20,3]返回如下的二叉树:    ...

  10. [译]Understanding ECMAScript 6 内容目录

    说明 浏览器与Node.js兼容 这本书是写给谁的 概述 帮助与支持 基本知识 更好的Unicode支持 其他字符串变化 其他正则表达式变化 Object.is() 块绑定 解构赋值 数字 总结 函数 ...