Bzoj 4720 换教室 (期望DP)
刚发现Bzoj有Noip的题目,只会换教室这道题.....
Bzoj 题面:Bzoj 4720
Luogu题目:P1850 换教室
大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大概是自己比较有成就感的题目(我才不会告诉你们,我这个题因为const int 挂了)
期望的线性性质:和的期望 = 期望的和.
期望\(E(x) = \sum_iP_i*W_i\)
那么这个题的期望就是\(L * P_i\)长度乘以概率.
知道期望的性质及期望,下面就是动态规划的部分.
设置状态:\(f[i][j][0/1]\)表示前i个教室,已经申请了j个教室,0表示这个时间段要去\(c_i\),1表示这个时间段要去\(d_i\)
之后开始想转移方程:
一. \(f[i][j][0]\)
- 上一个教室不参加申请.
- 上一个教室参加申请.
- 上一个教室申请失败
- 上一个教室申请成功
二.\(f[i][j][1]\)
- 这个教室不参加申请
- 这个教室申请失败
- 这个教室申请成功
- 这个教室参加申请
- 这个教室申请失败
上个教室申请成功
上个教室申请失败- 这个教室申请成功
上个教室申请成功
上个教室申请失败
#include <iostream>
#include <cstring>
#include <cstdio>
using namespace std;
const int maxT = 2000 + 7;
const int maxM = 90000 + 7;
const int maxN = 300 + 7;
int c[maxT],d[maxT],dis[maxN][maxN];
double k[maxT];
double E[maxT][maxT][2];
inline int read() {
int x = 0,E = 1;char c = getchar();
while(c < '0' || c > '9') {if(c == '-')E = -1;c = getchar();}
while(c >= '0' && c <= '9') {x = x * 10 + c - '0';c = getchar();}
return x * E;
}
int main() {
int n = read() ,m = read(),v = read(),e = read();
for(int i = 1;i <= n;++ i) c[i] = read();
for(int i = 1;i <= n;++ i) d[i] = read();
for(int i = 1;i <= n;++ i) cin >> k[i];
int u,g,w;
for(int i = 1;i <= v;++ i)
for(int j = 1;j < i;++ j)
dis[i][j] = dis[j][i] = 999999999;
for(int i = 1;i <= e;++ i) {
u = read(),g = read(),w = read();
dis[g][u] = dis[u][g] = min(dis[u][g],w);
}
for(int k = 1;k <= v;++ k)
for(int i = 1;i <= v;++ i)
for(int j = 1;j <= v;++ j)
if(dis[i][k] + dis[k][j] < dis[i][j])
dis[i][j] = dis[j][i] = dis[i][k] + dis[k][j];
for(int i = 1;i <= n;++ i)
for(int j = 0;j <= m;++ j)
E[i][j][0] = E[i][j][1] = 999999999;
E[1][1][1] = E[1][0][0] = 0;
for(int i = 2;i <= n;++ i) {
E[i][0][0] = E[i - 1][0][0] + dis[c[i - 1]][c[i]];
for(int j = 1;j <= min(i,m);++ j) {
E[i][j][0] = min(E[i - 1][j][1] + k[i - 1] * dis[d[i - 1]][c[i]] + (1 - k[i - 1]) * dis[c[i - 1]][c[i]],E[i - 1][j][0] + dis[c[i - 1]][c[i]]);
E[i][j][1] = min(E[i - 1][j - 1][1] + k[i - 1] * k[i] * dis[d[i - 1]][d[i]] + k[i - 1] * (1 - k[i]) * dis[d[i - 1]][c[i]] + (1 - k[i - 1]) * k[i] * dis[c[i - 1]][d[i]] + (1 - k[i - 1]) * (1 - k[i]) * dis[c[i - 1]][c[i]],E[i - 1][j - 1][0] + k[i] * dis[c[i - 1]][d[i]] + (1 - k[i]) * dis[c[i - 1]][c[i]]);
}
}
double minn = 9999999999;
for(int i = 0;i <= m;++ i) minn = min(min(E[n][i][1],E[n][i][0]),minn);
printf("%.2lf\n", minn);
return 0;
}
Bzoj 4720 换教室 (期望DP)的更多相关文章
- 换教室(期望+DP)
换教室(期望+DP) \(dp(i,j,1/0)\)表示第\(i\)节课,申请了\(j\)次调换,这节课\(1/0\)调换. 换教室 转移的时候考虑: 上次没申请 这次也没申请 加上\(dis(fr[ ...
- bzoj4720: [Noip2016]换教室(期望dp)
4720: [Noip2016]换教室 Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1294 Solved: 698[Submit][Status ...
- 【bzoj4720】[NOIP2016]换教室 期望dp
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的课程同时在不同的 ...
- 【BZOJ4720】【NOIP2016】换教室 [期望DP]
换教室 Time Limit: 20 Sec Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行四个整数n,m,v ...
- 【bzoj4720】[Noip2016]换教室 期望dp+最短路
Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程.在可以选择的课程中,有2n节 课程安排在n个时间段上.在第i(1≤i≤n)个时间段上,两节内容相同的 ...
- [BZOJ 4720] 换教室
Link: BZOJ 4720 传送门 Solution: 2016年$NOIP$考的一道语文题 题面虽长,但思路并不难想 对于这类期望问题,大多数时候都用期望$dp$来解决 根据询问:在$n$个时间 ...
- Luogu P1850 换教室(期望dp)
P1850 换教室 题意 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有\(2n\)节课程安排在\(n\)个时间段上.在第\(i(1\l ...
- P1850 换教室 期望dp
P1850 换教室 题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq ...
- Luogu P1850 [NOIp2016提高组]换教室 | 期望dp
题目链接 思路: <1>概率与期望期望=情况①的值*情况①的概率+情况②的值*情况②的概率+--+情况n的值*情况n的概率举个例子,抛一个骰子,每一面朝上的概率都是1/6,则这一个骰子落地 ...
随机推荐
- P3809【模板】后缀排序
传送门 深入理解了一波后缀数组,这东西真的很妙诶,自己推感觉完全不现实,看来只能靠背代码了 这段时间就多敲敲,把板子记熟吧 代码: #include<cstdio> #include< ...
- F - Balanced Number
#include <iostream> #include <algorithm> #include <cstring> #include <cstdio> ...
- C. Chessboard( Educational Codeforces Round 41 (Rated for Div. 2))
//暴力 #include <iostream> #include <algorithm> #include <string> using namespace st ...
- JMeter中的HTTPS套接字错误
Apache JMeter对启用SSL的应用程序执行性能和/或负载测试时,SSL套接字错误可能是经常遇到的麻烦,严重阻碍了您的测试工作.本文重点介绍如何通过相应地配置和调优JMeter来克服这些与连接 ...
- 《Python网络爬虫之三种数据解析方式》
引入 回顾requests实现数据爬取的流程 指定url 基于requests模块发起请求 获取响应对象中的数据 进行持久化存储 其实,在上述流程中还需要较为重要的一步,就是在持久化存储之前需要进行指 ...
- Less学习(2)(完结)
七.模式匹配与Guard表达式 根据传入参数的不同,引入不同的属性集. .mixin (dark, @color) { color: darken(@color, 10%); } .mixin (li ...
- L. Right Build bfs
http://codeforces.com/gym/101149/problem/L 给出一个有向图,从0开始,<u, v>表示要学会v,必须掌握u,现在要学会a和b,最小需要经过多少个点 ...
- MDX之百分比
MDX的几种百分比的计算方法 实际应用中,特别是一些分析报表,经常需要计算数据百分比.份额.平均值.累计占比等,在数据仓库飞速发展的今天,我们需要了解一些经常编写的MDX语句的写法,以满足工作中的需要 ...
- debian中sudo无法使用问题
原文链接:http://sharadchhetri.com/2013/08/07/sudo-command-not-found-debian-7/ To solve this issue instal ...
- mui开发中获取单选按钮、复选框的值
js获取单选按钮的值 function getVals(){ var res = getRadioRes('rds'); if(res == null){mui.toast('请选择'); retur ...