设d(u, j, 0)表示在以u为根的子树中至多走k步并且最终返回u,能吃到的最多的苹果。

则有状态转移方程:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
using namespace std; const int maxn = + ;
const int maxk = + ;
int n, k; int a[maxn];
int d[maxn][maxk][];
vector<int> G[maxn]; void dfs(int u, int fa)
{
for(int i = ; i < G[u].size(); i++)
{
int v = G[u][i];
if(v == fa) continue;
dfs(v, u);
for(int j = k; j >= ; j--)
for(int t = ; t <= j; t++)
{
if(t > ) d[u][j][] = max(d[u][j][], d[u][j-t][] + d[v][t-][]);
if(t > ) d[u][j][] = max(d[u][j][], d[u][j-t][] + d[v][t-][]);
d[u][j][] = max(d[u][j][], d[u][j-t][] + d[v][t-][]);
}
}
} int main()
{
while(scanf("%d%d", &n, &k) == && n)
{
for(int i = ; i <= n; i++) G[i].clear();
memset(d, , sizeof(d));
for(int i = ; i <= n; i++)
{
scanf("%d", a + i);
for(int j = ; j <= k; j++) d[i][j][] = d[i][j][] = a[i];
}
for(int i = ; i < n; i++)
{
int u, v; scanf("%d%d", &u, &v);
G[u].push_back(v); G[v].push_back(u);
} dfs(, ); printf("%d\n", max(d[][k][], d[][k][]));
} return ;
}

代码君

POJ 2486 树形背包DP Apple Tree的更多相关文章

  1. POJ 1155 树形背包(DP) TELE

    题目链接:  POJ 1155 TELE 分析:  用dp[i][j]表示在结点i下最j个用户公司的收益, 做为背包处理.        dp[cnt][i+j] = max( dp[cnt][i+j ...

  2. 【bzoj4987】Tree 树形背包dp

    题目描述 从前有棵树. 找出K个点A1,A2,…,Ak. 使得∑dis(AiAi+1),(1<=i<=K-1)最小. 输入 第一行两个正整数n,k,表示数的顶点数和需要选出的点个数. 接下 ...

  3. HDU 1011 树形背包(DP) Starship Troopers

    题目链接:  HDU 1011 树形背包(DP) Starship Troopers 题意:  地图中有一些房间, 每个房间有一定的bugs和得到brains的可能性值, 一个人带领m支军队从入口(房 ...

  4. HDU1561 The more ,The better (树形背包Dp)

    ACboy很喜欢玩一种战略游戏,在一个地图上,有N座城堡,每座城堡都有一定的宝物,在每次游戏中ACboy允许攻克M个城堡并获得里面的宝物.但由于地理位置原因,有些城堡不能直接攻克,要攻克这些城堡必须先 ...

  5. 【bzoj4007】[JLOI2015]战争调度 暴力+树形背包dp

    题目描述 给你一棵 $n$ 层的完全二叉树,每个节点可以染黑白两种颜色.对于每个叶子节点及其某个祖先节点,如果它们均为黑色则有一个贡献值,如果均为白色则有另一个贡献值.要求黑色的叶子节点数目不超过 $ ...

  6. 【bzoj1495】[NOI2006]网络收费 暴力+树形背包dp

    题目描述 给出一个有 $2^n$ 个叶子节点的完全二叉树.每个叶子节点可以选择黑白两种颜色. 对于每个非叶子节点左子树中的叶子节点 $i$ 和右子树中的叶子节点 $j$ :如果 $i$ 和 $j$ 的 ...

  7. 【bzoj2427】[HAOI2010]软件安装 Tarjan+树形背包dp

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大).但是现 ...

  8. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  9. [POJ1155]TELE(树形背包dp)

    看到这道题的第一眼我把题目看成了TLE 哦那不是重点 这道题是树形背包dp的经典例题 题目描述(大概的): 给你一棵树,每条边有一个cost,每个叶节点有一个earn 要求在earn的和大于等于cos ...

随机推荐

  1. 转 用好HugePage,告别Linux性能故障

    超过32G 的数据库,可以是使用如下方法配置. ######### Slow Performance with High CPU Usage on 64-bit Linux with Large SG ...

  2. ZOJ How Many Nines 模拟 | 打表

    How Many Nines Time Limit: 1 Second      Memory Limit: 65536 KB If we represent a date in the format ...

  3. Linux sftp用法

    sftp用法 1. 用sftp如何登录服务器 sftp 是一个交互式文件传输程式.它类似于 ftp, 但它进行加密传输,比FTP有更高的安全性.下边就简单介绍一下如何远程连接主机,进行文件的上传和下载 ...

  4. SQL注入原理与解决方法代码示例

    一.什么是sql注入? 1.什么是sql注入呢? 所谓SQL注入,就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令,比如先前的很多影视网 ...

  5. iOS 循环引用解决方案

    一.BLOCK 循环引用 一般表现为,某个类将block作为自己的属性变量,然后该类在block的方法体里面又使用了该类本身.构成循环引用. // 定义 block 的时候,会对外部变量做一次 cop ...

  6. -bash: mail: command not found

    近日,安装了一个最小化的centos 6.3 6,用mail发送邮件进行测试的时候提示-bash: mail: command not found mailx没有安装,于是: yum -y insta ...

  7. 学习python报错处理

    1.如图所示 原因是因为没有安装火狐浏览器驱动. 解决办法:1.下载火狐浏览器驱动https://github.com/mozilla/geckodriver/releases 2.安装包解压后安装在 ...

  8. ucosii(2.89)mutex 应用要点

    mutex 的创建在于共享资源打交道是可以可以保证满足互斥条件:1,必须保证继承优先级要高于可能与相应共享资源打交道的任务中优先级最高的优先级.2,不要将占有Mutex的任务挂起,也不要让占有mute ...

  9. PAT (Basic Level) Practise (中文)-1033. 旧键盘打字(20)

    PAT (Basic Level) Practise (中文)-1033. 旧键盘打字(20)  http://www.patest.cn/contests/pat-b-practise/1033 旧 ...

  10. thinkphp 结合phpexcel实现excel导入

    控制器文件: class ExcelAction extends Action { public function __construct() { import('ORG.Util.ExcelToAr ...