BZOJ3884 上帝与集合的正确用法 【欧拉定理】
题目
对于100%的数据,T<=1000,p<=10^7
题解
来捉这道神题
欧拉定理的一般形式:
\]
我们令
\]
那么有
\]
\(O(\log p)\)递归即可
#include<iostream>
#include<cstdio>
#include<cmath>
#include<bitset>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 10000005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
bitset<maxn> isn;
int p[maxn],phi[maxn],pi;
void init(){
phi[1] = 1;
for (int i = 2; i <= 10000000; i++){
if (!isn[i]) p[++pi] = i,phi[i] = i - 1;
for (int j = 1; j <= pi && i * p[j] <= 10000000; j++){
isn[i * p[j]] = true;
if (i % p[j] == 0){
phi[i * p[j]] = phi[i] * p[j];
break;
}
phi[i * p[j]] = phi[i] * (p[j] - 1);
}
}
}
int qpow(int a,int b,int p){
int ans = 1;
for (; b; b >>= 1,a = 1ll * a * a % p)
if (b & 1) ans = 1ll * ans * a % p;
return ans;
}
int Ans(int p){
if (p == 1) return 0;
return qpow(2,Ans(phi[p]) + phi[p],p);
}
int main(){
init();
int T = read(),p;
while (T--){
p = read();
printf("%d\n",Ans(p));
}
return 0;
}
BZOJ3884 上帝与集合的正确用法 【欧拉定理】的更多相关文章
- 【BZOJ3884】上帝与集合的正确用法 [欧拉定理]
上帝与集合的正确用法 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Input 第一行一个T ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- [BZOJ3884] 上帝与集合的正确用法 (欧拉函数)
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=3884 题目大意: 给出 M, 求 $2^{2^{2^{2^{...}}}}$ % M ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
随机推荐
- java基础面试题:如何把一段逗号分割的字符串转换成一个数组? String s = "a" +"b" + "c" + "d";生成几个对象?
package com.swift; public class Douhao_String_Test { public static void main(String[] args) { /* * 如 ...
- js中的||、&&与!用法
&&和||在JQuery源代码内尤为使用广泛,由网上找了些例子作为参考,对其用法研究了一下: 1. && function a(){ alert("a&quo ...
- Python学习——numpy.random
numpy.random.rand numpy.random模块作用是生成随机数,其中numpy.random.rand(d0, d1, ..., dn):生成一个[0,1)之间的随机浮点数或N维浮点 ...
- ATM-interface-user
from db import db_handlerfrom lib import common user_logger = common.get_logger('user') def login_in ...
- web前后台数据交互的几种方式
1.利用cookie对象 Cookie是服务器保存在客户端中的一小段数据信息.使用Cookie有一个前提,就是客户端浏览器允许使用Cookie并对此做出相应的设置.一般不赞成使用Cookie. (1) ...
- JZOJ 2137. 【GDKOI2004】城市统计 (Standard IO)
2137. [GDKOI2004]城市统计 (Standard IO) Time Limits: 1000 ms Memory Limits: 128000 KB Detailed Limits ...
- 使用 CAST
使用 CAST: CAST ( expression AS data_type ) 使用 CONVERT: CONVERT (data_type[(length)], expression [, st ...
- Green Space【绿色空间】
Green Space Living in an urban area with green spaces has a long-lasting positive impact on people's ...
- CMSIS-DAP仿真器_学习(转载)
先给大家普及一下,哈哈.CMSIS-DAP仿真器,是ARM官方做的开源仿真器,没有版权,自由制作.官方给的源代码,使用的是NXP的单片机LPC4320做的.这个源代码,只要你安装了KEIL5,就可以找 ...
- A1031 Hello World for U (20)(20 分)
A1031 Hello World for U (20)(20 分) Given any string of N (>=5) characters, you are asked to form ...