设最大权值为\(M\)

\(T=\sqrt M\)

定理

任意一个\(\le M\)的数一定可以表示为abc三个数的乘积

满足这三个数要么\(\le T\),要么是一个质数

证明:

考虑反证

假设\(a>b>c\),满足\(a>T\)且\(a\)不为素数

因为\(a>T\)且\(abc\le M\),则有\(bc\le T\)

我们设\(a=x*y\),一定不可能x,y均\(\ge T\)

假设\(x>y\),则\(y \le T\)

则原数可表示为\(x,y,bc\)三数乘积

若此时x仍不满足两条件之一,继续分解,最后定能满足

预处理O(n)

  1. 线性筛,求出每个数的最小质因子

  2. 预处理每个数能分解成哪三个数

    对于x,其最小质因数为p

    则x的分解先复制\(x/p\)的分解

    设为a,b,c

    若\(a*p\le T\)则\(a*=p\)

    若\(b*p\le T\)则\(b*=p\)

    否则\(c*=p\)

    正确性证明:

    不难发现若\(p\ge T\)则x为素数且x=p

    而对于x为素数的,\(x/p=1\)显然正确,不用考虑

    那么此时\(p\le T\)

    若a,b,c其一为1,显然正确,不用考虑

    此时有\(a*p,b*p,c*p\)均为合数

    所以:现在要证明的是\(a,b,c\)中至少有一个数乘\(p\)后\(\le T\)

    就是证明\(a,b,c\)中不会出现每一个数乘\(p\)都\(\ge T\)

    反证:

    根据条件有\(a,b,c>\frac T p\)

    设\(x/p\)的最小质因数为w,则\(w\ge p\)

    依此类推\(a,b,c\ge p\)

    ①\(p< \sqrt T\),此时\(a,b,c>\sqrt T\)

    \(pabc>\frac {T^3} {p^2}>{T^2}=M\)

    说明原数在权值范围M之外,矛盾

    ②\(p\ge \sqrt T\),

    此时\(pabc>p^4>T^2=M\)

  3. 预处理T以内两两数的gcd

    可以递推,像辗转相除,g[x][y]=g[y][x%y]

Code

void init_gcd(){
notprime[1]=1;
int i,j,d;
for(i=2;i<N;i++){
if(!notprime[i]){
prime[++cnt]=i;
p[i]=i;
}
for(j=1;j<=cnt;j++){
if((LL)prime[j]*i>=N) break;
d=prime[j]*i;
notprime[d]=1;
p[d]=prime[j];
if(i%prime[j]==0) break;
}
} split[1][0]=split[1][1]=split[1][2]=1;
for(i=2;i<N;i++){
memcpy(split[i],split[i/p[i]],sizeof(split[i/p[i]]));
if(split[i][0]*p[i]<=sn) split[i][0]*=p[i];
else if(split[i][1]*p[i]<=sn) split[i][1]*=p[i];
else split[i][2]*=p[i];
} // gcd(0,0)=0 , gcd(0,x)=x
for(i=0;i<=sn;i++)
for(j=0;j<=i;j++){
if(!i||!j) g[i][j]=i|j;
else g[i][j]=g[j][i]=g[j][i%j];//j<=i
}
}

求两数gcd O(1)

int gcd(int x,int y){
int ans=1,i,d;
for(i=0;i<3;i++){
if(split[x][i]<=sn) d=g[split[x][i]][y%split[x][i]];
else d=(y%split[x][i]==0)?split[x][i]:1;
ans*=d;
y/=d;//避免算重
}
return ans;
}

O(1)gcd学习笔记的更多相关文章

  1. iOS多线程之GCD学习笔记

    什么是GCD 1.全称是Grand Central Dispatch,可译为“牛逼的中枢调度器” 2.纯C语言,提供了非常多强大的函数 GCD的优势 GCD是苹果公司为多核的并行运算提出的解决方案 G ...

  2. 多线程-GCD学习笔记

    ********************************* 基本概念 *********************************** 1. Grand Central Dispatch ...

  3. stein法求gcd 学习笔记

    原理显然 由于当x,y都为奇数时进行辗转相见 每次减完必有偶数 而偶数最多除log次 那么也最多减log次 复杂度有保证 注:代码未验证 int gcd(int x,int y){ int res=1 ...

  4. 最大公约数GCD学习笔记

    引理 已知:k|a,k|b 求证:k|(m*a+n*b) 证明:∵ k|a ∴ 有p*k=a 同理可得q*k=b ∴ p*k*m=m*a,q*k*n=n*b ∴ k(p*m+q*n)=m*a+n*b ...

  5. iOS GCD学习笔记

    // 后台执行: dispatch_async(dispatch_get_global_queue(, ), ^{ // something }); // 主线程执行: dispatch_async( ...

  6. RAC学习笔记

    RAC学习笔记 ReactiveCocoa(简称为RAC),是由Github开源的一个应用于iOS和OS开发的新框架,Cocoa是苹果整套框架的简称,因此很多苹果框架喜欢以Cocoa结尾. 在学习Re ...

  7. iOS学习笔记-精华整理

    iOS学习笔记总结整理 一.内存管理情况 1- autorelease,当用户的代码在持续运行时,自动释放池是不会被销毁的,这段时间内用户可以安全地使用自动释放的对象.当用户的代码运行告一段 落,开始 ...

  8. iOS学习笔记总结整理

    来源:http://mobile.51cto.com/iphone-386851_all.htm 学习IOS开发这对于一个初学者来说,是一件非常挠头的事情.其实学习IOS开发无外乎平时的积累与总结.下 ...

  9. BZOJ 2038: [2009国家集训队]小Z的袜子(hose)【莫队算法裸题&&学习笔记】

    2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 9894  Solved: 4561[Subm ...

随机推荐

  1. 第17题:打印1到最大的n位数

    面试题17:打印1到最大的n位数  题目:输入数字n,按顺序打印出从1最大的n位十进制数.比如输入3,则打印出1.2.3一直到最大的3位数即999. 考点: 用字符串或者数组表达一个大数. 思路 1. ...

  2. Atlas 配置高可用

    keepalived安装 #下载keepalived ./configure --prefix=/usr/local Make && make install Atlas主安装keep ...

  3. 对数据仓库Hive的一些认识

    首先我们得明白什么是数据仓库?   数据仓库,英文名称为Data warehouse,可简写为DW或DWH.数据仓库的目的是构建面向分析的集成化数据环境,为企业提供决策支持(Decision Supp ...

  4. Redis之String类型操作

    接口IRedisDaoStr: package com.net.test.redis.base.dao; import java.util.List; import java.util.Map; /* ...

  5. Codeforces Round #460 (Div. 2)-A. Supermarket

    A. Supermarket time limit per test2 seconds memory limit per test256 megabytes Problem Description W ...

  6. 水题:HDU-1088-Write a simple HTML Browser(模拟题)

    解题心得: 1.仔细读题,细心细心...... 2.题的几个要求:超过八十个字符换一行,<br>换行,<hr>打印一个分割线,最后打印一个新的空行.主要是输出要求比较多. 3. ...

  7. DFS:Prime Ring Problem(素数环)

    解体心得: 1.一个回溯法,可以参考八皇后问题. 2.题目要求按照字典序输出,其实在按照回溯法得到的答案是很正常的字典序.不用去特意排序. 3.输出有个坑,就是在输出一串的最后不能有空格,不然要PE, ...

  8. AndroidStudio和IDEA的初始设置

    一.第一次安装: Android Studio安装完成后,第一次启动AS前,为了避免重新下载新版本的SDK,需要做如下操作: AS启动前,打开安装目录,请先将bin目录的idea.properties ...

  9. UnicodeDecodeError: 'ascii' codec can't decode byte 0xe4 in position 19: ordinal not in range(128)

    解决方案: 1: 在网上找到的解决方案是: 在调用import matplotlib.pyplot as plt前 import sys sys.setdefaultencoding(“gbk”) 让 ...

  10. Django之session验证的三种姿势

    一.什么是session session是保存在服务端的键值对,Django默认支持Session,并且默认是将Session数据存储在数据库中,即:django_session 表中. 二.FVB中 ...