Kaggle的Outbrain点击预测比赛分析
https://yq.aliyun.com/articles/293596
https://www.kaggle.com/c/outbrain-click-prediction
https://www.kaggle.com/anokas/outbrain-eda
用户个性化点击率预估
基本场景:
document_id(document) uuid(user) ad_id(a set of ads)
原始数据:
page_views.csv: the log of users visiting documents
- uuid
- document_id
- timestamp (ms since 1970-01-01 - 1465876799998)
- platform (desktop = 1, mobile = 2, tablet =3)
- geo_location (country>state>DMA)
- traffic_source (internal = 1, search = 2, social = 3)
clicks_train.csv:
- display_id
- ad_id
- clicked (1 if clicked, 0 otherwise)
events.csv: (information on the display_id context)
- display_id
- uuid
- document_id
- timestamp
- platform
- geo_location
promoted_content.csv: details on the ads.
- ad_id
- document_id
- campaign_id
- advertiser_id
documents_meta.csv: details on the documents.
- document_id
- source_id (the part of the site on which the document is displayed, e.g. edition.cnn.com)
- publisher_id
- publish_time
documents_topics.csv, documents_entities.csv, and documents_categories.csv all provide information about the content in a document, as well as Outbrain's confidence in each respective relationship.
数据分析:
import pandas as pd
import os
import gc # We're gonna be clearing memory a lot
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline df_train = pd.read_csv('./outbrain-click-prediction/clicks_train.csv')
df_test = pd.read_csv('./outbrain-click-prediction/clicks_test.csv') # 页面广告数分布
size_train = df_train.groupby('display_id')['ad_id'].count().value_counts()
size_train = size_train / np.sum(size_train)
直方图:
plt.figure(figsize=(12,4))
p = sns.color_palette()
sns.barplot(size_train.index, size_train.values, alpha=0.8, color=p[0], label='train')
plt.legend()
plt.xlabel('Number of Ads in display', fontsize=12)
plt.ylabel('Proportion of set', fontsize=12)
统计广告出现次数:
# 以下两行都可以
df_train.groupby('ad_id')['ad_id'].count()
df_train.groupby('ad_id').agg(np.size)
统计训练集和测试集中ad的重合度:
len(set(df_test.ad_id.unique()).intersection(df_train.ad_id.unique())) / len(df_test.ad_id.unique())
对events.csv进行统计:
print (events.columns.to_list())
print (events.head())
print (events.platform.value_counts())
events.platform = events.platform.astype(str)
print (events.platform.value_counts()) print (events.groupby('uuid')['uuid'].count().sort_values()) # 统计用户的出现次数
Kaggle的Outbrain点击预测比赛分析的更多相关文章
- Kaggle 自行车租赁预测比赛项目实现
作者:大树 更新时间:01.20 email:59888745@qq.com 数据处理,机器学习 回主目录:2017 年学习记录和总结 .caret, .dropup > .btn > . ...
- Kaggle 广告转化率预测比赛小结
20天的时间参加了Kaggle的 Avito Demand Prediction Challenged ,第一次参加,成绩离奖牌一步之遥,感谢各位队友,学到的东西远比成绩要丰硕得多.作为新手,希望每记 ...
- KDDCUP CTR预测比赛总结
赛题与数据介绍 给定查询和用户信息后预测广告点击率 搜索广告是近年来互联网的主流营收来源之一.在搜索广告背后,一个关键技术就是点击率预测-----pCTR(predict the click-thro ...
- kaggle之泰坦尼克号乘客死亡预测
目录 前言 相关性分析 数据 数据特点 相关性分析 数据预处理 预测模型 Logistic回归训练模型 模型优化 前言 一般接触kaggle的入门题,已知部分乘客的年龄性别船舱等信息,预测其存活情况, ...
- kaggle首秀之intel癌症预测(续篇)
之前写了这篇文章.现在把他搬到知乎live上了.书非借不能读也,因此搞了点小费用,如果你觉得贵,加我微信我给你发红包返回给你. 最近的空余时间拿去搞kaggle了, 好久没更新文章了.今天写写kagg ...
- talkingdata比赛分析
1.kaggle数据分析经验: https://medium.com/unstructured/how-feature-engineering-can-help-you-do-well-in-a-ka ...
- 由Kaggle竞赛wiki文章流量预测引发的pandas内存优化过程分享
pandas内存优化分享 缘由 最近在做Kaggle上的wiki文章流量预测项目,这里由于个人电脑配置问题,我一直都是用的Kaggle的kernel,但是我们知道kernel的内存限制是16G,如下: ...
- SILK 预测模块分析
SILK是一种新结构的基于噪声整形量化算法的编解码框架.不同于类CELP的AMR,EVRC,G729,Speex等标准. 类CELP的结构都是以码本激励为量化框架的编码器.但是这里并不讨论NSQ结构和 ...
- ACM-ICPC 训练平台 & 比赛 分析
the file can download in https://pan.baidu.com/s/1HwoLFHGAG-boQbIn9xIhxA occ5 the article is also pu ...
随机推荐
- NetCore 2.0 应用程序在centos 7上通过docker发布
一 安装netcore 2.0 SDK 在centos 上面安装netcore 2.0 与window上面是不太一样的,注意,linux是不支持同时安装两个版本的.netcore SDK的,由于我之 ...
- JAVA 基础--开发环境 vscode 搭建
对于使用 Visual Studio Code 的 Java 开发者来说,Language Support for Java(TM) by Red Hat 扩展提供了非常好的语言特性支持,比如智能感知 ...
- html--元素显示优先级
HTML元素的显示优先级 一.HTML元素的显示优先级(显示层次问题,哪个在上哪个在下!总是显示在最前面) 帧元素>HTML元素优先,表单元素总>非表单元素优先 ...
- 通用的高度可扩展的Excel导入实现(附Demo)
Demo源码 背景 通过程序将excel导入到数据库中是一项非常常见的功能.通常的做法是:先将excel转成DataTable,然后将DataTable转换成List<T>,最终通过Lis ...
- Wordpress入门笔记
简单介绍一下wordpress个人操作,建议安装中文版. 登入后台管理者页面, 浏览器地址栏输入 (线上) http://XXXX.com/wp-login.php (本地) ht ...
- LiveScript 函数
The LiveScript Book The LiveScript Book 函数 定义函数是非常轻量级的. 1.(x, y) -> x + y2.3.-> # an empty ...
- CCF认证题 搜索题
栋栋最近开了一家餐饮连锁店,提供外卖服务.随着连锁店越来越多,怎么合理的给客户送餐成为了一个急需解决的问题. 栋栋的连锁店所在的区域可以看成是一个n×n的方格图(如下图所示),方格的格点上的位置上可能 ...
- 【转】参照protobuf,将json数据转换成二进制在网络中传输。
http://blog.csdn.net/gamesofsailing/article/details/38335753?utm_source=tuicool&utm_medium=refer ...
- HDU——1465不容易系列之一(错排公式)
不容易系列之一 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- offsetWidth clientWidth scrollWidth 三者之间的区别和联系
scrollWidth:对象的实际内容的宽度,不包边线宽度,会随对象中内容超过可视区后而变大. clientWidth:对象内容的可视区的宽度,不包滚动条等边线,会随对象显示大小的变化而改变. off ...