Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)
题目链接 Yet Another Minimization Problem
题意 给定一个序列,现在要把这个序列分成k个连续的连续子序列。求每个连续子序列价值和的最小值。
设$f[i][j]$为前$i$个数分成$j$段的最优解
不难得出状态转移方程$f[i][j] = min(f[k][j - 1], calc(j + i, i))$
该DP具有决策单调性
即若$f[i][j]$是从$f[x][j - 1]$转移到的,$f[i+1][j]$是从$f[y][j - 1]$转移到的,那么一定有$x <= y$。
考虑到这一点就可以用分治优化。
还有一点就是$calc()$的计算。
用莫队计算就可以了(分治的时候同一个递归状态下莫队查询端点的改变都是连续的)
时间复杂度$O(nklogn)$
#include <bits/stdc++.h> using namespace std; #define rep(i, a, b) for (int i(a); i <= (b); ++i)
#define dec(i, a, b) for (int i(a); i >= (b); --i) typedef long long LL; const int N = 1e5 + 10;
const int A = 22; LL f[N][A], ret;
int a[N], cnt[N];
int n, m, l, r; void query_init(){
memset(cnt, 0, sizeof cnt);
l = 1, r = 0;
ret = 0;
} LL query(int ql, int qr){
while (r < qr){
++r;
ret += 1ll * cnt[a[r]];
++cnt[a[r]];
} while (r > qr){
--cnt[a[r]];
ret -= 1ll * cnt[a[r]];
--r;
} while (l > ql){
--l;
ret += 1ll * cnt[a[l]];
++cnt[a[l]];
} while (l < ql){
--cnt[a[l]];
ret -= 1ll * cnt[a[l]];
++l;
} return ret;
} void solve(int j, int l, int r, int st, int ed){
if (l > r) return;
int mid = (l + r) >> 1;
int x; rep(i, st, min(mid, ed)){
LL now = query(i, mid);
if (f[i - 1][j - 1] + now <= f[mid][j]){
f[mid][j] = f[i - 1][j - 1] + now;
x = i;
}
} if (l != r){
solve(j, l, mid - 1, st, x);
solve(j, mid + 1, r, x, ed);
}
} int main(){ scanf("%d%d", &n, &m);
rep(i, 1, n) scanf("%d", a + i); query_init(); rep(i, 1, n) rep(j, 0, m) f[i][j] = 1e18;
rep(i, 1, n) f[i][1] = query(1, i);
rep(j, 2, m) solve(j, 1, n, 1, n); printf("%lld\n", f[n][m]);
return 0;
}
Codeforces 868F Yet Another Minimization Problem(分治+莫队优化DP)的更多相关文章
- Codeforces 868F. Yet Another Minimization Problem【决策单调性优化DP】【分治】【莫队】
LINK 题目大意 给你一个序列分成k段 每一段的代价是满足\((a_i=a_j)\)的无序数对\((i,j)\)的个数 求最小的代价 思路 首先有一个暴力dp的思路是\(dp_{i,k}=min(d ...
- CF868F Yet Another Minimization Problem 分治决策单调性优化DP
题意: 给定一个序列,你要将其分为k段,总的代价为每段的权值之和,求最小代价. 定义一段序列的权值为$\sum_{i = 1}^{n}{\binom{cnt_{i}}{2}}$,其中$cnt_{i}$ ...
- CodeForces 868F Yet Another Minimization Problem(决策单调性优化 + 分治)
题意 给定一个序列 \(\{a_1, a_2, \cdots, a_n\}\),要把它分成恰好 \(k\) 个连续子序列. 每个连续子序列的费用是其中相同元素的对数,求所有划分中的费用之和的最小值. ...
- Codeforces 868F Yet Another Minimization Problem 决策单调性 (看题解)
Yet Another Minimization Problem dp方程我们很容易能得出, f[ i ] = min(g[ j ] + w( j + 1, i )). 然后感觉就根本不能优化. 然后 ...
- Codeforces 868F. Yet Another Minimization Problem
Description 给出一个长度为 \(n\) 的序列,你需要将它分为 \(k\) 段,使得每一段的价值和最小,每一段的价值是这一段内相同的数的个数 题面 Solution 容易想到设 \(f[i ...
- 【CodeForces】868F. Yet Another Minimization Problem
原题链接 题目大意是有N个数,分成K段,每一段的花费是这个数里相同的数的数对个数,要求花费最小 如果只是区间里相同数对个数的话,莫队就够了 而这里是!边单调性优化边莫队(只是类似莫队)!而移动的次数和 ...
- Codeforces 375D - Tree and Queries(dfs序+莫队)
题目链接:http://codeforces.com/contest/351/problem/D 题目大意:n个数,col[i]对应第i个数的颜色,并给你他们之间的树形关系(以1为根),有m次询问,每 ...
- Codeforces 940F Machine Learning (带修改莫队)
题目链接 Codeforces Round #466 (Div. 2) Problem F 题意 给定一列数和若干个询问,每一次询问要求集合$\left\{c_{0}, c_{1}, c_{2}, ...
- Codeforces 700D - Huffman Coding on Segment(莫队+根分)
Codeforces 题目传送门 & 洛谷题目传送门 好家伙,刚拿到此题时我连啥是 huffman 编码都不知道 一种对 \(k\) 个字符进行的 huffman 编码的方案可以看作一个由 \ ...
随机推荐
- GoogleTest 之路3-Mocking Framework
当你写一个原型或者测试的时候,依赖整个object 是不可行和明智的.一个 mock object和 real object 有同样的接口(所以它可以像同一个使用),但是让你在运行时进行指定它应该如何 ...
- python-time模块--pickle模块
目录 time 模块 为什么要有time模块,time模块有什么用? time模块的三种格式 时间戳(timestamp) 格式化时间(需要自己定义格式) 结构化时间(struct-time) 结构化 ...
- Python学习笔记:time模块和datetime模块(时间和日期)
time模块 time模块通常用来操作时间戳信息(各种“秒”),常用的方法有: time.sleep(seconds):将当前程序阻塞指定秒数,然后继续运行程序. time.time():返回当前时间 ...
- MYSQL安装与库的基本操作
mysql数据库 什么是数据库 # 用来存储数据的仓库 # 数据库可以在硬盘及内存中存储数据 数据库与文件存储数据区别 数据库本质也是通过文件来存储数据, 数据库的概念就是系统的管理存储数据的文件 数 ...
- LOFTER 迁移
title: LOFTER 迁移 date: 2018-09-01 16:41:02 updated: tags: [其他] description: keywords: comments: imag ...
- Hive安装步骤
首先解压压缩包 然后进入bin 执行 ./hive 不过现在hive使用的是自己默认的数据库,不方便,可以通过配置使用MySQL数据库 创建hive-site.xml 粘贴一下内容 <confi ...
- MIME类型-服务端验证上传文件的类型
MIME的作用 : 使客户端软件,区分不同种类的数据,例如web浏览器就是通过MIME类型来判断文件是GIF图片,还是可打印的PostScript文件. web服务器使用MIME来说明发送数据的种类, ...
- Python面试题(练习二)
1.用Python实现一个二分查找的函数. data = [1, 3, 6, 7, 9, 12, 14, 16, 17, 18, 20, 21, 22, 23, 30, 32, 33, 35] def ...
- chardet的下载及安装
1.chardet下载地址 https://pypi.python.org/pypi/chardet/3.0.4#downloads 2.解压至安装路径 D:\Program Files (x86)\ ...
- 让 PHP COOKIE 立即生效(不用刷新就可以使用)
<?php function set_my_cookie($, $path = '', $domain = '') { $_COOKIE[$var] = $value; setcookie($v ...