BZOJ 4766: 文艺计算姬
4766: 文艺计算姬
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 456 Solved: 239
[Submit][Status][Discuss]
Description
Input
Output
Sample Input
Sample Output
HINT
Source
分析:
貌似可以Matrix-Tree打表找规律?
可以用prufer编码证明...
首先理解一下什么叫prufer编码:戳这里
考虑如果两个点有边相连,那么这两个点一定属于不同的集合,并且最后剩下的两个点一定是属于不同集合的,所以这个长度为$n+m-2$的序列一定是有$n-1$个$A$集合的点和$m-1$个$B$集合点,所以答案就是$n^{m-1}*m^{n-1}$...
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
//by NeighThorn
#define int long long
using namespace std; int n,m,mod; inline int mul(int x,int y){
int res=0;
while(y){
if(y&1)
res=(res+x)%mod;
x=(x+x)%mod,y>>=1;
}
return res;
} inline int power(int x,int y){
int res=1;
while(y){
if(y&1)
res=mul(res,x);
x=mul(x,x),y>>=1;
}
return res;
} signed main(void){
scanf("%lld%lld%lld",&n,&m,&mod);
printf("%lld\n",mul(power(n,m-1),power(m,n-1)));
return 0;
}
By NeighThorn
BZOJ 4766: 文艺计算姬的更多相关文章
- bzoj 4766: 文艺计算姬 -- 快速乘
4766: 文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB Description "奋战三星期,造台计算机".小W响应号召,花了三星期 ...
- bzoj 4766: 文艺计算姬 矩阵树定理
题目: 给定一个一边点数为\(n\),另一边点数为\(m\),共有\(n*m\)条边的带标号完全二分图\(K_{n,m}\) 计算其生成树个数 \(n,m,p \leq 10^{18} ,p为模数\) ...
- BZOJ 4766: 文艺计算姬 [矩阵树定理 快速乘]
传送门 题意: 给定一个一边点数为n,另一边点数为m,共有n*m条边的带标号完全二分图$K_{n,m}$ 求生成树个数 1 <= n,m,p <= 10^18 显然不能暴力上矩阵树定理 看 ...
- BZOJ.4766.文艺计算姬(Prufer)
题目链接 这是完全二分图,那么在构造Prufer序列时,最后会剩下两个点,两点的边是连接两个集合的,这两个点自然分属两个集合 那么集合A被删了m-1次,每次从n个点中选:B被删了n-1次,每次都可以从 ...
- 【BZOJ】4766: 文艺计算姬
[题目]给定两边节点数为n和m的完全二分图,求生成树数取模给定的p.n,m,p<=10^18. [算法]生成树计数(矩阵树定理) [题解]参考自 [bzoj4766]文艺计算姬 by WerKe ...
- bzoj4766 文艺计算姬
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞.普通计算机能计算一个带标号完全图的生成树个数, ...
- BZOJ4766:文艺计算姬(矩阵树定理)
Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺术细胞. 普通计算机能计算一个带标号完全图的生成树个数 ...
- 【BZOJ4766】文艺计算姬 [暴力]
文艺计算姬 Time Limit: 1 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description "奋战三星期,造台计算机 ...
- [bzoj4766] 文艺计算姬 (矩阵树定理+二分图)
传送门 Description "奋战三星期,造台计算机".小W响应号召,花了三星期造了台文艺计算姬.文艺计算姬比普通计算机有更多的艺 术细胞.普通计算机能计算一个带标号完全图的生 ...
随机推荐
- vue 采坑
1.ref 在父组件中访问子组件实例,或者直接操作DOM元素时需要ref <input ref="ipt"> 通过this.$refs.ipt 得到此input $re ...
- flask-bootstrap
pip install bootstarp 使用bower安装bootstrap的命令是: bash$ bower install bootstrap不过问题出在如何安装bower上. 官方网站上这样 ...
- MySQL-Xtrabackup备份还原
前言 通常我们都是使用xtrabackup工具来备份数据库,它是一个专业的备份工具,先来简单介绍下它. Xtrabackup percona提供的mysql数据库备份工具,惟一开源的能够对innodb ...
- Nginx配置根据客户端设备转发
#user nobody; worker_processes ; #error_log logs/error.log; #error_log logs/error.log notice; #error ...
- 37.VUE学习之-表单的综合运用
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- windows Server 2008 r2-搭建FTP服务器
FTP协议介绍 FTP协议工作在OSI参考模型的第七层,TCP模型的第四层上(即应用层上).使用FTP传输而不是UDP,与服务端建立连接经过三次握手. FTP端口介绍 FTP默认端口是21,.(21端 ...
- configParser模块详谈
前言 使用配置文件来灵活的配置一些参数是一件很常见的事情,配置文件的解析并不复杂,在python里更是如此,在官方发布的库中就包含有做这件事情的库,那就是configParser configPars ...
- django之路由分发
路由分发决定哪一个路由由哪一个视图函数来处理. 注意:django2.0里的re_path和django1.0里的url除了名字不一样,其他都一样. 简单配置 from django.urls imp ...
- STM32串口中断实例二
int main(void) { uint8_t a=;//LED高低电压控制 /* System Clocks Configuration */ RCC_Configuration(); //系统时 ...
- 4 Values whose Sum is 0 POJ - 2785
4 Values whose Sum is 0 Time Limit: 15000MS Memory Limit: 228000K Total Submissions: 29243 Accep ...