SP14932 LCA - Lowest Common Ancestor
Description:
一棵树是一个简单无向图,图中任意两个节点仅被一条边连接,所有连通无环无向图都是一棵树。\(-Wikipedia\)
最近公共祖先(\(LCA\))是……(此处省去对\(LCA\)的描述),你的任务是对一棵给定的树\(T\)以及上面的两个节点\(u,v\)求出他们的\(LCA\)。
例如图中9和12号节点的LCA为3号节点
Input:
输入的第一行为数据组数\(T\),对于每组数据,第一行为一个整数\(N(1\leq N\leq1000)\),节点编号从\(1\)到\(N\),接下来的\(N\)行里每一行开头有一个数字\(M(0\leq M\leq999)\),\(M\)为第\(i\)个节点的子节点数量,接下来有\(M\)个数表示第\(i\)个节点的子节点编号。下面一行会有一个整数\(Q(1\leq Q\leq1000)\),接下来的\(Q\)行每行有两个数\(u,v\),输出节点\(u,v\)在给定树中的\(LCA\)。
输入数据保证只有一个根节点并且没有环。
Output:
对于每一组数据输出\(Q+1\)行,第一行格式为\("Case i:"\)(没有双引号),\(i\)表示当前数据是第几组,接下来的\(Q\)行每一行一个整数表示一对节点\(u,v\)的\(LCA\)。
Sample Input:
1
7
3 2 3 4
0
3 5 6 7
0
0
0
0
2
5 7
2 7
Sample Output:
Case 1:
3
1
\(Translated by @_yxl_g\)l_
思路:一道求\(LCA\)的板子题,根据题目给出的每个点的孩子建边然后找出根结点,直接\(dfs\)求出深度后跑\(LCA\)就可以了。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#define maxn 1007
using namespace std;
int t,q,rt,tim,f[maxn][22],n,m,head[maxn],d[maxn],num;
bool vis[maxn];
struct node {
int v,nxt;
}e[maxn<<1];
inline void ct(int u, int v) {
e[++num].v=v;
e[num].nxt=head[u];
head[u]=num;
}
void dfs(int u, int fa) {
for(int i=head[u];i;i=e[i].nxt) {
int v=e[i].v;
if(v!=fa) {
f[v][0]=u;
d[v]=d[u]+1;
dfs(v,u);
}
}
}
inline int lca(int a, int b) {
if(d[a]>d[b]) swap(a,b);
for(int i=20;i>=0;--i)
if(d[a]<=d[b]-(1<<i)) b=f[b][i];
if(a==b) return a;
for(int i=20;i>=0;--i)
if(f[a][i]!=f[b][i]) a=f[a][i],b=f[b][i];
return f[a][0];
}
int main() {
scanf("%d",&t);
while(t--) {
++tim;
memset(f,0,sizeof(f));
memset(d,0,sizeof(d));
memset(head,0,sizeof(head));
memset(vis,0,sizeof(vis));
num=0;
scanf("%d",&n);
for(int i=1,m;i<=n;++i) {
scanf("%d",&m);
for(int j=1,v;j<=m;++j) {
scanf("%d",&v);
ct(i,v);ct(v,i);
vis[v]=1;
}
}
for(int i=1;i<=n;++i) if(!vis[i]) rt=i;
dfs(rt,0);
for(int j=1;j<=20;++j)
for(int i=1;i<=n;++i)
f[i][j]=f[f[i][j-1]][j-1];
scanf("%d",&q);
printf("Case %d:\n",tim);
for(int i=1,u,v;i<=q;++i) {
scanf("%d%d",&u,&v);
printf("%d\n",lca(u,v));
}
}
return 0;
}
SP14932 LCA - Lowest Common Ancestor的更多相关文章
- 洛谷 SP14932 LCA - Lowest Common Ancestor
洛谷 SP14932 LCA - Lowest Common Ancestor 洛谷评测传送门 题目描述 A tree is an undirected graph in which any two ...
- SP14932 【LCA - Lowest Common Ancestor】
专业跟队形 唯一一个有$\LaTeX$的 裸的$LCA$,我用的是$Tarjan~LCA$,注意两点相同特判 #include<iostream> #include<cstdio&g ...
- 寻找二叉树中的最低公共祖先结点----LCA(Lowest Common Ancestor )问题(递归)
转自 剑指Offer之 - 树中两个结点的最低公共祖先 题目: 求树中两个节点的最低公共祖先. 思路一: ——如果是二叉树,而且是二叉搜索树,那么是可以找到公共节点的. 二叉搜索树都是排序过的,位于左 ...
- LeetCode 235. Lowest Common Ancestor of a Binary Search Tree (二叉搜索树最近的共同祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the BS ...
- PAT A1143 Lowest Common Ancestor (30 分)——二叉搜索树,lca
The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both U ...
- 235. Lowest Common Ancestor of a Binary Search Tree(LCA最低公共祖先)
Given a binary search tree (BST), find the lowest common ancestor (LCA) of two given nodes in the ...
- Lowest Common Ancestor (LCA)
题目链接 In a rooted tree, the lowest common ancestor (or LCA for short) of two vertices u and v is defi ...
- PAT Advanced 1143 Lowest Common Ancestor (30) [二叉查找树 LCA]
题目 The lowest common ancestor (LCA) of two nodes U and V in a tree is the deepest node that has both ...
- [LeetCode] Lowest Common Ancestor of a Binary Tree 二叉树的最小共同父节点
Given a binary tree, find the lowest common ancestor (LCA) of two given nodes in the tree. According ...
随机推荐
- BZOJ4524 [Cqoi2016]伪光滑数
BZOJ上的题面很乱,这里有一个题面. 题解: 正解是可持久化可并堆+DP,可惜我不会... 但暴力也可过这道题. 先在不超过N的前提下,在大根堆里加入每个质数的J次方,1<=j, 然后就可以发 ...
- 纯CSS3实现淡入淡出下拉菜单
纯CSS3实现淡入淡出下拉菜单是一款比较简单清新的CSS3教程下拉菜单,这款下拉菜单是垂直方向的,点击主菜单项可以展开和折叠子菜单,在展开折叠的过程中伴随着淡入淡出的动画效果 源代码:http://w ...
- IDEAL葵花宝典:java代码开发规范插件 FindBugs-IDEA
前言: 检测代码中可能的bug及不规范的位置,检测的模式相比p3c更多,写完代码后检测下 避免低级bug,强烈建议用一下,一不小心就发现很多老代码的bug. 使用步骤: 1):打开 Settings ...
- Struts2与ServletAPI解耦
什么是与Servlet API解耦? 为了避免与servlet API耦合在一起,方便Action做单元测试, Struts2对HttpServletRequest,HttpSession,和Serv ...
- codeforces 706D D. Vasiliy's Multiset(trie树)
题目链接: D. Vasiliy's Multiset time limit per test 4 seconds memory limit per test 256 megabytes input ...
- 示例的libevent的程序
著作权归作者所有. 商业转载请联系作者获得授权,非商业转载请注明出处. 作者:auxten 链接:http://zhuanlan.zhihu.com/auxten/20315482 来源:知乎 /* ...
- 牛客网暑期ACM多校训练营(第三场)G:Coloring Tree(函数的思想)
之前两次遇到过函数的思想的题,所以这次很敏感就看出来了.可以参考之前的题: https://www.cnblogs.com/hua-dong/p/9291507.html Christmas is c ...
- java面试题04
1.就你所熟悉的银行业务面说一下,越详细越好 银行经验:手机银行 网上银行经验 怎么支付 转账 了解基本业务 2.了解工作流的控制,审批流程以及帐务处理么? java中怎么实现工作流.审批流程 ...
- requests模拟上传照片
博客园相册管理中有上传照片的功能 现在通过requests库模拟上传图片功能 先手动上传图片,用Fiddler转包,查看到上传图片接口请求格式, ------WebKitFormBoundarySKZ ...
- SRAM SROM DRAM DROM DDR NAND FLASH EMMC的区别
RAM(Random Access Memory)的全名为随机存取记忆体,它相当于PC机上的移动存储,用来存储和保存数据的.它在任何 时候都可以读写,RAM通常是作为操作系统或其他正在运行程序的临时存 ...