题目大意:
  给定$n(n\leq10^{11})$,求$\displaystyle\sum_{i=1}^n[\tau(i)=4]$。

思路:
  设$p,q$为不相等的质数,则满足$\tau(i)=4$的数$i$一定可以表示成$pq$或$p^3$。
  对于$i=pq$的情况,可以先线性筛预处理出$\sqrt n$以内的质数,然后用LOJ6235的方法,用洲阁筛求出DP数组$f$。加上$last[j]-1$就是当$p_i^2>j$时不用$-1$转移,也就是加上了$p_i^2>j$的质数个数。此时$f[cnt+1-p_i]$表示的就是$\pi(n/p_i)-\pi(\sqrt n)$。统计答案时,枚举素数$p_i$,求$\sum_{p_i\leq\sqrt n}(\pi(n/p_i)-\pi(p_i))$即可。
  对于$i=p^3$的情况,直接在筛出来的质数中二分答案即可。
  时间复杂度$O\left(\frac{n^{\frac34}}{\ln n}\right)$。

细节:
  $n=1$时二分会挂掉,需要特判。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<functional>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int LIM=,P=;
bool vis[LIM];
int lim,p[P],sum[LIM],last[LIM*],cnt;
int64 n,val[LIM*],f[LIM*];
inline void sieve() {
for(register int i=;i<=lim;i++) {
if(!vis[i]) p[++p[]]=i;
sum[i]=sum[i-]+!vis[i];
for(register int j=;j<=p[]&&i*p[j]<=lim;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) break;
}
}
}
int main() {
lim=sqrt(n=getint());
sieve();
for(register int64 i=;i<=n;i=n/(n/i)+) {
val[++cnt]=n/i;
}
std::reverse(&val[],&val[cnt]+);
std::copy(&val[],&val[cnt+],&f[]);
for(register int i=;i<=p[];i++) {
for(register int j=cnt;j;j--) {
const int64 k=val[j]/p[i],pos=k<=lim?k:cnt+-n/k;
if(k<p[i]) break;
f[j]-=f[pos]+last[pos]-i+;
last[j]=i;
}
}
int64 ans=;
for(register int i=;i<=cnt;i++) {
f[i]+=last[i]-;
}
for(register int i=;i<=p[];i++) {
ans+=f[cnt+-p[i]]-i;
}
if(n!=) ans+=std::upper_bound(&p[],&p[p[]]+,floor(pow(n,./)))-&p[];
printf("%lld\n",ans);
return ;
}

[CF665F]Four Divisors的更多相关文章

  1. codeforces 27E Number With The Given Amount Of Divisors

    E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...

  2. HDU - The number of divisors(约数) about Humble Numbers

    Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence ...

  3. Divisors

    计算小于n的数中,约数个数最多的数,若有多个最输出最小的一个数. http://hihocoder.com/problemset/problem/1187 对于100有 60 = 2 * 2 * 3 ...

  4. Xenia and Divisors

    Xenia and Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  5. hihocoder1187 Divisors

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Given an integer n, for all integers not larger than n, f ...

  6. The number of divisors(约数) about Humble Numbers[HDU1492]

    The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  7. Sum of divisors

    Problem Description mmm is learning division, she's so proud of herself that she can figure out the ...

  8. Codeforces Beta Round #85 (Div. 1 Only) B. Petya and Divisors 暴力

    B. Petya and Divisors Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/111 ...

  9. UVa 294 (因数的个数) Divisors

    题意: 求区间[L, U]的正因数的个数. 分析: 有这样一条公式,将n分解为,则n的正因数的个数为 事先打好素数表,按照上面的公式统计出最大值即可. #include <cstdio> ...

随机推荐

  1. Java面向对象---方法递归调用

    递归调用是一种特殊的调用形式,即方法自己调用自己 public int method(int num){ if(num==1){ return 1; } else { return num+metho ...

  2. OpenCV学习笔记(七) 图像金字塔 阈值 边界

    转自: OpenCV 教程 使用 图像金字塔 进行缩放 图像金字塔是视觉运用中广泛采用的一项技术.一个图像金字塔是一系列图像的集合 - 所有图像来源于同一张原始图像 - 通过梯次向下采样获得,直到达到 ...

  3. 3 View - 状态保持 session

    1.状态保持 http协议是无状态的:每次请求都是一次新的请求,不会记得之前通信的状态 客户端与服务器端的一次通信,就是一次会话 实现状态保持的方式:在客户端或服务器端存储与会话有关的数据 存储方式包 ...

  4. TCP/IP网络编程之优雅地断开套接字

    基于TCP套接字的半关闭 Linux的close函数和Windows的closesocket函数意味着完全断开连接,完全断开连接不仅指无法传输数据,而且也不能接收数据.因此,在某些情况下,通信一方调用 ...

  5. exkmp略解

    推导 ext[i]表示母串s[i..lens]和子串t[1..lent]的最长公共前缀. nxt[i]表示t[i..lent]和t[1..lent]的最长公共前缀. 假设ext[1..k]已经算好,现 ...

  6. linux环境搭建系列之jdk安装

    JDK是java软件开发包的简称,要想开发java程序就必须安装JDK.没有JDK的话,无法编译Java程序. 前提: linux centOS6.6 64位操作系统 ROOT账号 安装包的获取:官网 ...

  7. Leetcode 502.IPO

    IPO 假设 LeetCode 即将开始其 IPO.为了以更高的价格将股票卖给风险投资公司,LeetCode希望在 IPO 之前开展一些项目以增加其资本. 由于资源有限,它只能在 IPO 之前完成最多 ...

  8. 平时代码中不符合python风格的举例

    良好的代码风格体现出自己的专业,良好的代码风格,方便同事之间协作. 下面举例讲讲自己在代码中不符合python风格的一些情况,方便自己写出优雅的代码. 段落之间空两行 很长的参数用括号连接但是不要超过 ...

  9. 【bzoj1041】[HAOI2008]圆上的整点 数论

    题目描述 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. 输入 只有一个正整数n,n<=2000 000 000 输出 整点个数 样例输入 4 样例输出 4 题解 数 ...

  10. 【bzoj4869】[Shoi2017]相逢是问候 扩展欧拉定理+并查集+树状数组

    题目描述 Informatik verbindet dich und mich. 信息将你我连结. B君希望以维护一个长度为n的数组,这个数组的下标为从1到n的正整数.一共有m个操作,可以分为两种:0 ...