zh.wikipedia.org/wiki/Bagging算法

Bagging算法 (英语:Bootstrap aggregating,引导聚集算法),又称装袋算法,是机器学习领域的一种团体学习算法。最初由Leo Breiman于1994年提出。Bagging算法可与其他分类回归算法结合,提高其准确率、稳定性的同时,通过降低结果的方差,避免过拟合的发生。

给定一个大小为训练集,Bagging算法从中均匀、有放回地(即使用自助抽样法)选出个大小为子集,作为新的训练集。在这个训练集上使用分类、回归等算法,则可得到{\displaystyle m}个模型,再通过取平均值、取多数票等方法,即可得到Bagging的结果。

http://machine-learning.martinsewell.com/ensembles/bagging/

【bootstrap samples 放回抽样 random samples with replacement】

Bagging (Breiman, 1996), a name derived from “bootstrap aggregation”, was the first effective method of ensemble learning and is one of the simplest methods of arching [1]. The meta-algorithm, which is a special case of the model averaging, was originally designed for classification and is usually applied to decision tree models, but it can be used with any type of model for classification or regression. The method uses multiple versions of a training set by using the bootstrap, i.e. sampling with replacement. Each of these data sets is used to train a different model. The outputs of the models are combined by averaging (in case of regression) or voting (in case of classification) to create a single output. Bagging is only effective when using unstable (i.e. a small change in the training set can cause a significant change in the model) nonlinear models.

https://www.packtpub.com/mapt/book/big_data_and_business_intelligence/9781787128576/7/ch07lvl1sec46/bagging--building-an-ensemble-of-classifiers-from-bootstrap-samples

Bagging is an ensemble learning technique that is closely related to the MajorityVoteClassifier that we implemented in the previous section, as illustrated in the following diagram:

However, instead of using the same training set to fit the individual classifiers in the ensemble, we draw bootstrap samples (random samples with replacement) from the initial training set, which is why bagging is also known as bootstrap aggregating. To provide a more concrete example of how bootstrapping works, let's consider the example shown in the following figure. Here, we have seven different training instances (denoted as indices 1-7) that are sampled randomly with replacement in each round of bagging. Each bootstrap sample is then used to fit a classifier, which is most typically an unpruned decision tree:

LOWESS (locally weighted scatterplot smoothing)  局部散点加权平滑】

LOESS and LOWESS thus build on "classical" methods, such as linear and nonlinear least squares regression. They address situations in which the classical procedures do not perform well or cannot be effectively applied without undue labor. LOESS combines much of the simplicity of linear least squares regression with the flexibility of nonlinear regression. It does this by fitting simple models to localized subsets of the data to build up a function that describes the deterministic part of the variation in the data, point by point. In fact, one of the chief attractions of this method is that the data analyst is not required to specify a global function of any form to fit a model to the data, only to fit segments of the data.

【用局部数据去逐点拟合局部--不用全局函数拟合模型--局部问题局部解决】

http://www.richardafolabi.com/blog/non-technical-introduction-to-random-forest-and-gradient-boosting-in-machine-learning.html

【A collective wisdom of many is likely more accurate than any one. Wisdom of the crowd – Aristotle, 300BC-】

bagging

gradient boosting

  • Ensemble model are great for producing robust, highly optimized and improved models.
  • Random Forest and Gradient Boosting are Ensembled-Based algorithms
  • Random Forest uses Bagging technique while Gradient Boosting uses Boosting technique.
  • Bagging uses multiple random data sampling for modeling while Boosting uses iterative refinement for modeling.
  • Ensemble models are not easy to interpret and they often work like a little back box.
  • Multiple algorithms must be minimally used to that the prediction system can be reasonably tractable.

Bootstrap aggregating Bagging 合奏 Ensemble Neural Network的更多相关文章

  1. Ensemble Learning: Bootstrap aggregating (Bagging) & Boosting & Stacked generalization (Stacking)

    Booststrap aggregating (有些地方译作:引导聚集),也就是通常为大家所熟知的bagging.在维基上被定义为一种提升机器学习算法稳定性和准确性的元算法,常用于统计分类和回归中. ...

  2. 读paper:Deep Convolutional Neural Network using Triplets of Faces, Deep Ensemble, andScore-level Fusion for Face Recognition

    今天给大家带来一篇来自CVPR 2017关于人脸识别的文章. 文章题目:Deep Convolutional Neural Network using Triplets of Faces, Deep ...

  3. 【集成模型】Bootstrap Aggregating(Bagging)

    0 - 思想 如下图所示,Bagging(Bootstrap Aggregating)的基本思想是,从训练数据集中有返回的抽象m次形成m个子数据集(bootstrapping),对于每一个子数据集训练 ...

  4. 转载:bootstrap, boosting, bagging 几种方法的联系

    转:http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ja ...

  5. bootstrap, boosting, bagging 几种方法的联系

    http://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, jack ...

  6. (转)关于bootstrap, boosting, bagging,Rand forest

    转自:https://blog.csdn.net/jlei_apple/article/details/8168856 这两天在看关于boosting算法时,看到一篇不错的文章讲bootstrap, ...

  7. bootstrap, boosting, bagging

    介绍boosting算法的资源: 视频讲义.介绍boosting算法,主要介绍AdaBoosing http://videolectures.net/mlss05us_schapire_b/ 在这个站 ...

  8. 【DKNN】Distilling the Knowledge in a Neural Network 第一次提出神经网络的知识蒸馏概念

    原文链接 小样本学习与智能前沿 . 在这个公众号后台回复"DKNN",即可获得课件电子资源. 文章已经表明,对于将知识从整体模型或高度正则化的大型模型转换为较小的蒸馏模型,蒸馏非常 ...

  9. 【论文考古】知识蒸馏 Distilling the Knowledge in a Neural Network

    论文内容 G. Hinton, O. Vinyals, and J. Dean, "Distilling the Knowledge in a Neural Network." 2 ...

随机推荐

  1. shell date获取时间值

    使用Shell获取上一个月.星期的时间范围 #!/bin/bash date_today=`date -d '1 day ago' +%Y%m%d`   #最近7天 date_befor_7day=` ...

  2. ios为app应用添加icon

    在工程中打开plist文件,添加,选择icon files,然后添加不同分辨率的icon名称即可.如果clean后再运行程序还是没有看到效果,那么就删除掉app包然后 再次运行就可以看到效果了.

  3. 报错:OpenCV Error: Assertion failed (src.size() == dst.size() && src.type() == dst.ty pe()) in unknown function, file ..……

    在用cvDilate函数的时候,老是导致程序中断,报错如下: OpenCV Error: Assertion failed (src.size() == dst.size() && s ...

  4. appium查找元素心得

    在使用appium测试app的时候并没有selenium那么好用,为什么呢? 个人觉得是因为定位方式太少,selenium中的xpath已经强大到基本可以找到任何一个元素. 但是在appium中xpa ...

  5. linux中文件描述符

    :: # cat ping.txt PING baidu.com (() bytes of data. bytes from ttl= time=32.1 ms bytes from ttl= tim ...

  6. Vue2.0 :key作用

    转自:https://www.cnblogs.com/zhumingzhenhao/p/7688336.html 为了给 Vue 一个提示,以便它能跟踪每个节点的身份,从而重用和重新排序现有元素,你需 ...

  7. #測试相关#Getting “junit.framework.AssertionFailedError: Forked Java VM exited abnormally” Exception

    编写Ant脚本进行持续測试的时候.出现了junit.framework.AssertionFailedError: Forked Java VM exited abnormally的报错,以此为key ...

  8. hdu-5015-233 Matrix-矩阵

    非常显然矩阵的第一列为: 0 a[1] a[2] a[3] a[4] 我们转化一下,转化为 23 a[1] a[2] a[3] a[4] 3 那么由第一列转移到第二列则为 23*10+3 a[1]+2 ...

  9. 【转载】关于 .Net 逆向的那些工具:反编译篇

    在项目开发过程中,估计也有人和我遇到过同样的经历:生产环境出现了重大Bug亟需解决,而偏偏就在这时仓库中的代码却不是最新的.在这种情况下,我们不能直接在当前的代码中修改这个Bug然后发布,这会导致更严 ...

  10. 【Sprint3冲刺之前】TD学生助手测试用例

    项目名称 TDzhushou 项目承担部门 骐骥之队 完成日期 2014/5/29 历史版本: 版本/状态 作者 参与者 起止日期 备注 TDzhushou1.1 解凤娇 骐骥之队 5/3-5/7 2 ...