一个十进制分数 \(p/q\) 在 \(b\) 进制下是有限小数的充要条件是 \(q\) 的所有质因子都是 \(b\) 的质因子。

First, if \(p\) and \(q\) are not coprime, divide them on \(\gcd(p,q)\). Fraction is finite if and only if there is integer \(k\) such that \(q∣p⋅b^k\). Since \(p\) and \(q\) are being coprime now, \(q∣b^k\) \(\Rightarrow\) all prime factors of \(q\) are prime factors of \(b\).

#include <iostream>
#include <cstdio>
using namespace std;
typedef long long ll;
int n;
ll p, q, b;
ll gcd(ll a, ll b){
return !b?a:gcd(b, a%b);
}
int main(){
cin>>n;
while(n--){
scanf("%I64d %I64d %I64d", &p, &q, &b);
ll f=gcd(p, q);
p /= f; q /= f;
f = gcd(q, b);
while(f!=1){
while(q%f==0) q /= f;
f = gcd(q, b);
}
if(b%q) printf("Infinite\n");
else printf("Finite\n");
}
return 0;
}

cf984c Finite or not?的更多相关文章

  1. Finite State Machine 是什么?

    状态机(Finite State Machine):状态机由状态寄存器和组合逻辑电路构成,能够根据控制信号按照预先设定的状态进行状态转移,是协调相关信号动       作.完成特定操作的控制中心. 类 ...

  2. Finite State Machine

    Contents [hide]  1 Description 2 Components 3 C# - FSMSystem.cs 4 Example Description This is a Dete ...

  3. pumping lemma for finite regular language?

    some books describe pumping lemma as this: Let L be a regular language. Then there exists an integer ...

  4. codeforces 983A Finite or not?

    题意: 判断一个分数在某一进制下是否为无限小数. 思路: 首先把这个分数约分,然后便是判断. 首先,一个分数是否为无限小数,与分子是无关的,只与分母有关. 然后,再来看看10进制的分数,可化为有限小数 ...

  5. Codeforces Round #483 (Div. 2) C. Finite or not?

    C. Finite or not? time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  6. CF983A Finite or not?(数学)

    题意:给出分母,分子和进制,要求判断该数是否为有限小数. Solution 表示并不知道怎么判断. 度娘:“一个分数在最简分数的情况下,如果它的分母只含有2和5两个质因数,这个分数就能化成有限小数.” ...

  7. cf C. Finite or not? 数论

    You are given several queries. Each query consists of three integers pp, qq and bb. You need to answ ...

  8. 解题:CF983A Finite or not

    题面 一个$b$进制最简分数是有限循环小数当且仅当其分母没有与$b$不同的质因子,小学数奥内容水过 #include<cstdio> #include<cstring> #in ...

  9. 【数论】Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!] C. Finite or not?

    题意:给你一个分数,问你在b进制下能否化成有限小数. 条件:p/q假如已是既约分数,那么如果q的质因数分解集合是b的子集,就可以化成有限小数,否则不能. 参见代码:反复从q中除去b和q的公因子部分,并 ...

随机推荐

  1. 前端三剑客之javascript

    前端三剑客之javascript 给个小目录  一.JavaScript介绍  二.ECMAScript(核心) 三.BOM对象(浏览器对象) 四.DOM对象(文档对象模型) 总结: JS的组成: a ...

  2. python3基础06(随机数的使用)

    #!/usr/bin/env python# -*- coding:utf-8 -*- import osimport randomimport string la=[0,1,2,3,4,5,6,7, ...

  3. Samuraiwtf-的确是很好的渗透学习平台

    有人问我要渗透测试平台学习,我想到了Samurai ,记得里面带有很多的,这里来推广一下. Samurai Web 测试框架很多人说是live CD测试环境,但是现在似乎不是了,至少目前最新版的只有这 ...

  4. IOS CALayer基本使用 (图层)

    ● 其实UIView之所以能显示在屏幕上,完全是因为它内部的一个图层(CALayer) ● 在创建UIView对象时,UIView内部会自动创建一个图层(即CALayer对象),通过UIView 的l ...

  5. 【洛谷2216】[HAOI2007] 理想的正方形(二维RMQ)

    点此看题面 大致题意: 求出一个矩阵中所有\(n*n\)正方形中极差的最小值. 另一种做法 听说这题可以用单调队列去做,但是我写了一个二维\(RMQ\). 二维\(RMQ\) \(RMQ\)相信大家都 ...

  6. 注册Windows service及其相关

    注册Windows service,.net写的 net stop "xxxxxx""%SYSTEMROOT%\Microsoft.NET\Framework\v2.0. ...

  7. window下部署yapi

    YApi 是一个可本地部署的.打通前后端及QA的.可视化的接口管理平台. 环境要求 nodejs(尽量最新版本) mongodb(尽量最新版本) 1.安装node https://www.runoob ...

  8. Activiti学习记录(二)

    1.初始化数据库 使用工作流引擎创建23张表 public class TestActiviti { /** * 使用代码创建工作流需要的23张表 */ @Test public void creat ...

  9. C# checked运算符

    一.C# checked运算符 checked运算符用于对整型算术运算和显式转换启用溢出检查. 默认情况下,表达式产生的值如果超出了目标类型的范围,将会产生两种情况: ?常数表达式将导致编译时错误. ...

  10. python换行

    python中如果一行代码太长,看着不方便时,怎么办? 只需要在需要换行的地方添加上符号 \ 就行了.