http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html

part of Hypertext Transfer Protocol -- HTTP/1.1
RFC 2616 Fielding, et al.

9 Method Definitions

The set of common methods for HTTP/1.1 is defined below. Although this set can be expanded, additional methods cannot be assumed to share the same semantics for separately extended clients and servers.

The Host request-header field (section 14.23) MUST accompany all HTTP/1.1 requests.

9.1 Safe and Idempotent Methods

9.1.1 Safe Methods

Implementors should be aware that the software represents the user in their interactions over the Internet, and should be careful to allow the user to be aware of any actions they might take which may have an unexpected significance to themselves or others.

In particular, the convention has been established that the GET and HEAD methods SHOULD NOT have the significance of taking an action other than retrieval. These methods ought to be considered "safe". This allows user agents to represent other methods, such as POST, PUT and DELETE, in a special way, so that the user is made aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side-effects as a result of performing a GET request; in fact, some dynamic resources consider that a feature. The important distinction here is that the user did not request the side-effects, so therefore cannot be held accountable for them.

9.1.2 Idempotent Methods

Methods can also have the property of "idempotence" in that (aside from error or expiration issues) the side-effects of N > 0 identical requests is the same as for a single request. The methods GET, HEAD, PUT and DELETE share this property. Also, the methods OPTIONS and TRACE SHOULD NOT have side effects, and so are inherently idempotent.

However, it is possible that a sequence of several requests is non- idempotent, even if all of the methods executed in that sequence are idempotent. (A sequence is idempotent if a single execution of the entire sequence always yields a result that is not changed by a reexecution of all, or part, of that sequence.) For example, a sequence is non-idempotent if its result depends on a value that is later modified in the same sequence.

A sequence that never has side effects is idempotent, by definition (provided that no concurrent operations are being executed on the same set of resources).

9.2 OPTIONS

The OPTIONS method represents a request for information about the communication options available on the request/response chain identified by the Request-URI. This method allows the client to determine the options and/or requirements associated with a resource, or the capabilities of a server, without implying a resource action or initiating a resource retrieval.

Responses to this method are not cacheable.

If the OPTIONS request includes an entity-body (as indicated by the presence of Content-Length or Transfer-Encoding), then the media type MUST be indicated by a Content-Type field. Although this specification does not define any use for such a body, future extensions to HTTP might use the OPTIONS body to make more detailed queries on the server. A server that does not support such an extension MAY discard the request body.

If the Request-URI is an asterisk ("*"), the OPTIONS request is intended to apply to the server in general rather than to a specific resource. Since a server's communication options typically depend on the resource, the "*" request is only useful as a "ping" or "no-op" type of method; it does nothing beyond allowing the client to test the capabilities of the server. For example, this can be used to test a proxy for HTTP/1.1 compliance (or lack thereof).

If the Request-URI is not an asterisk, the OPTIONS request applies only to the options that are available when communicating with that resource.

A 200 response SHOULD include any header fields that indicate optional features implemented by the server and applicable to that resource (e.g., Allow), possibly including extensions not defined by this specification. The response body, if any, SHOULD also include information about the communication options. The format for such a

body is not defined by this specification, but might be defined by future extensions to HTTP. Content negotiation MAY be used to select the appropriate response format. If no response body is included, the response MUST include a Content-Length field with a field-value of "0".

The Max-Forwards request-header field MAY be used to target a specific proxy in the request chain. When a proxy receives an OPTIONS request on an absoluteURI for which request forwarding is permitted, the proxy MUST check for a Max-Forwards field. If the Max-Forwards field-value is zero ("0"), the proxy MUST NOT forward the message; instead, the proxy SHOULD respond with its own communication options. If the Max-Forwards field-value is an integer greater than zero, the proxy MUST decrement the field-value when it forwards the request. If no Max-Forwards field is present in the request, then the forwarded request MUST NOT include a Max-Forwards field.

9.3 GET

The GET method means retrieve whatever information (in the form of an entity) is identified by the Request-URI. If the Request-URI refers to a data-producing process, it is the produced data which shall be returned as the entity in the response and not the source text of the process, unless that text happens to be the output of the process.

The semantics of the GET method change to a "conditional GET" if the request message includes an If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, or If-Range header field. A conditional GET method requests that the entity be transferred only under the circumstances described by the conditional header field(s). The conditional GET method is intended to reduce unnecessary network usage by allowing cached entities to be refreshed without requiring multiple requests or transferring data already held by the client.

The semantics of the GET method change to a "partial GET" if the request message includes a Range header field. A partial GET requests that only part of the entity be transferred, as described in section14.35. The partial GET method is intended to reduce unnecessary network usage by allowing partially-retrieved entities to be completed without transferring data already held by the client.

The response to a GET request is cacheable if and only if it meets the requirements for HTTP caching described in section 13.

See section 15.1.3 for security considerations when used for forms.

9.4 HEAD

The HEAD method is identical to GET except that the server MUST NOT return a message-body in the response. The metainformation contained in the HTTP headers in response to a HEAD request SHOULD be identical to the information sent in response to a GET request. This method can be used for obtaining metainformation about the entity implied by the request without transferring the entity-body itself. This method is often used for testing hypertext links for validity, accessibility, and recent modification.

The response to a HEAD request MAY be cacheable in the sense that the information contained in the response MAY be used to update a previously cached entity from that resource. If the new field values indicate that the cached entity differs from the current entity (as would be indicated by a change in Content-Length, Content-MD5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale.

9.5 POST

The POST method is used to request that the origin server accept the entity enclosed in the request as a new subordinate of the resource identified by the Request-URI in the Request-Line. POST is designed to allow a uniform method to cover the following functions:

      - Annotation of existing resources;
      - Posting a message to a bulletin board, newsgroup, mailing list,
or similar group of articles;
      - Providing a block of data, such as the result of submitting a
form, to a data-handling process;
      - Extending a database through an append operation.

The actual function performed by the POST method is determined by the server and is usually dependent on the Request-URI. The posted entity is subordinate to that URI in the same way that a file is subordinate to a directory containing it, a news article is subordinate to a newsgroup to which it is posted, or a record is subordinate to a database.

The action performed by the POST method might not result in a resource that can be identified by a URI. In this case, either 200 (OK) or 204 (No Content) is the appropriate response status, depending on whether or not the response includes an entity that describes the result.

If a resource has been created on the origin server, the response SHOULD be 201 (Created) and contain an entity which describes the status of the request and refers to the new resource, and a Location header (see section 14.30).

Responses to this method are not cacheable, unless the response includes appropriate Cache-Control or Expires header fields. However, the 303 (See Other) response can be used to direct the user agent to retrieve a cacheable resource.

POST requests MUST obey the message transmission requirements set out in section 8.2.

See section 15.1.3 for security considerations.

9.6 PUT

The PUT method requests that the enclosed entity be stored under the supplied Request-URI. If the Request-URI refers to an already existing resource, the enclosed entity SHOULD be considered as a modified version of the one residing on the origin server. If the Request-URI does not point to an existing resource, and that URI is capable of being defined as a new resource by the requesting user agent, the origin server can create the resource with that URI. If a new resource is created, the origin server MUST inform the user agent via the 201 (Created) response. If an existing resource is modified, either the 200 (OK) or 204 (No Content) response codes SHOULD be sent to indicate successful completion of the request. If the resource could not be created or modified with the Request-URI, an appropriate error response SHOULD be given that reflects the nature of the problem. The recipient of the entity MUST NOT ignore any Content-* (e.g. Content-Range) headers that it does not understand or implement and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities, those entries SHOULD be treated as stale. Responses to this method are not cacheable.

The fundamental difference between the POST and PUT requests is reflected in the different meaning of the Request-URI. The URI in a POST request identifies the resource that will handle the enclosed entity. That resource might be a data-accepting process, a gateway to some other protocol, or a separate entity that accepts annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user agent knows what URI is intended and the server MUST NOT attempt to apply the request to some other resource. If the server desires that the request be applied to a different URI,

it MUST send a 301 (Moved Permanently) response; the user agent MAY then make its own decision regarding whether or not to redirect the request.

A single resource MAY be identified by many different URIs. For example, an article might have a URI for identifying "the current version" which is separate from the URI identifying each particular version. In this case, a PUT request on a general URI might result in several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an origin server.

PUT requests MUST obey the message transmission requirements set out in section 8.2.

Unless otherwise specified for a particular entity-header, the entity-headers in the PUT request SHOULD be applied to the resource created or modified by the PUT.

9.7 DELETE

The DELETE method requests that the origin server delete the resource identified by the Request-URI. This method MAY be overridden by human intervention (or other means) on the origin server. The client cannot be guaranteed that the operation has been carried out, even if the status code returned from the origin server indicates that the action has been completed successfully. However, the server SHOULD NOT indicate success unless, at the time the response is given, it intends to delete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an entity describing the status, 202 (Accepted) if the action has not yet been enacted, or 204 (No Content) if the action has been enacted but the response does not include an entity.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities, those entries SHOULD be treated as stale. Responses to this method are not cacheable.

9.8 TRACE

The TRACE method is used to invoke a remote, application-layer loop- back of the request message. The final recipient of the request SHOULD reflect the message received back to the client as the entity-body of a 200 (OK) response. The final recipient is either the

origin server or the first proxy or gateway to receive a Max-Forwards value of zero (0) in the request (see section 14.31). A TRACE request MUST NOT include an entity.

TRACE allows the client to see what is being received at the other end of the request chain and use that data for testing or diagnostic information. The value of the Via header field (section 14.45) is of particular interest, since it acts as a trace of the request chain. Use of the Max-Forwards header field allows the client to limit the length of the request chain, which is useful for testing a chain of proxies forwarding messages in an infinite loop.

If the request is valid, the response SHOULD contain the entire request message in the entity-body, with a Content-Type of "message/http". Responses to this method MUST NOT be cached.

9.9 CONNECT

This specification reserves the method name CONNECT for use with a proxy that can dynamically switch to being a tunnel (e.g. SSL tunneling [44]).

http verbs--Method Definitions的更多相关文章

  1. HTTP协议学习 - 9 Method Definitions

    # 前言 官方文档简略翻译.9 不是代表第九篇,而是在 RFC2616 中是第九篇.重要加粗,龟速翻译. # Method 9.3 GET The GET method means retrieve ...

  2. 超文本传输​​协议 - HTTP / 1.1(Hypertext Transfer Protocol -- HTTP/1.1)之方法定义(Method Definitions)

    9方法定义 下面定义了HTTP / 1.1的一组常用方法.尽管可以扩展这个集合,但是另外的方法不能假定为单独扩展的客户端和服务器共享相同的语义. 主机请求头域(14.23节)必须伴随所有的HTTP / ...

  3. RESTful, 说说 http 的 patch method

    最早的时候,我们只需要 GET 和 POST 方法,POST 方法的引入也只是为了消除 URL 过长,参数隐藏,上传文件的问题,完全和语义无关.接触到 RESTful 之后,我们开始思考 GET 和 ...

  4. HTTP Method详细解读(`GET` `HEAD` `POST` `OPTIONS` `PUT` `DELETE` `TRACE` `CONNECT`)

    前言 HTTP Method的历史: HTTP 0.9 这个版本只有GET方法 HTTP 1.0 这个版本有GET HEAD POST这三个方法 HTTP 1.1 这个版本是当前版本,包含GET HE ...

  5. HTTP Method 详细解读(`GET` `HEAD` `POST` `OPTIONS` `PUT` `DELETE` `TRACE` `CONNECT`)--转

    前言 HTTP Method的历史: HTTP 0.9 这个版本只有GET方法 HTTP 1.0 这个版本有GET HEAD POST这三个方法 HTTP 1.1 这个版本是当前版本,包含GET HE ...

  6. HTTP methods 与 RESTful API

    Note GET, primarily used to select resources. Other options for an API method include: POST, primari ...

  7. laravel 表单方法伪造

    有时候,我们可能需要手动定义发送表单数据所使用的 HTTP 请求方式,而 HTML 表单仅支持 GET 和 POST 两种方式,如果要使用其他的方式,则需要自己来定义实现. HTTP 请求方式概述 最 ...

  8. 接口--interface

    “interface”(接口)关键字使抽象的概念更深入了一层.我们可将其想象为一个“纯”抽象类.它允许创建者规定一个类的基本形式:方法名.自变量列表以及返回类型,但不规定方法主体.接口也包含了基本数据 ...

  9. AFNetworking 3.0 源码解读(三)之 AFURLRequestSerialization

    这篇就讲到了跟请求相关的类了 关于AFNetworking 3.0 源码解读 的文章篇幅都会很长,因为不仅仅要把代码进行详细的的解释,还会大概讲解和代码相关的知识点. 上半篇: URI编码的知识 关于 ...

随机推荐

  1. 性能测试--Jmeter随机生成/随机选取/csv读取关键字

    Jmeter随机生成/随机选取/csv读取关键字 一.随机生成关键字 随机生成关键字,需要组件:随机变量配置元件(Random Variable)  该组件的作用是生成字符+随机数字格式的字符串,并保 ...

  2. serve-index用法、实现原理(源码解读)

    本文主要讲解serve-index的用法和实现原理(源代码分析). 一 说明 serve-index的功能是将文件夹中文件列表显示到浏览器中. serve-index是一个NodeJS模块,可以通过N ...

  3. (转)nginx-rtmp-module和ffmpeg搭建实时HLS切片

    1.rtmp服务器 nginx+pcre+zlib+openssl+nginx-rtmp-module ./configure \ --prefix=/usr/local/nginx \ --sbin ...

  4. windows下python安装face_recognition模块

    安装face_recognition出现报错,要先安装dlib 安装dlib时报错,要先安装cmake cmake安装成功后,用pip安装dlib失败 从pypi下载dlib的wheel文件,然后用w ...

  5. 提高iOS开发效率的第三方框架等--不断更新中。。。

    1. Mantle Mantle 让我们能简化 Cocoa 和 Cocoa Touch 应用的 model 层.简单点说,程序中经常要进行网络请求,请求到得一般是 json 字符串,我们一般会建一个 ...

  6. 加州小学grade1,学习计划

    Visual vocabulary Grammar Spelling Maths Chapter 1 Patterns and Number SenseChapter 2Understanding A ...

  7. jquery.dataTables.min.js: Uncaught TypeError: Cannot read property 'style' of undefined

    原因:datatable表格内容有操作列,而表头没有定义操作列 少写了一行:<th>操作</th>

  8. 什么是Grunt

    Grunt,简而言之,就是运行在Node.js上面的任务管理器(task runner),其可以在任何语言和项目中自动化指定的任务.我们可通过npm来安装Grunt和Grunt插件 为什么使用Grun ...

  9. 发现eclipse红叉,查看markers发现Target runtime Apache Tomcat v8.0 is not defined

    导入以前的项目(Markers中注意查看,就在console选项卡旁边),报以下错误,但不影响操作: Faceted Project Problem        Target runtime Apa ...

  10. listen 61

    Multiple Stresses Killed Snail Memory Stress sucks. It can affect your body and mind. Previous resea ...