解题心得:
1、这是一个完全背包问题的变形,题目要求是求在规定的重量下求价值最小,所以需要将d[0]=0关键的初始化
2、当不可能出现最小的价值时,d的状态并没有被改变,说明并没有放进去一个硬币。

题目:

题目解释:
输入一个空存钱罐的质量,再规定一个存钱罐的存满的质量,告诉你几个硬币的质量和价值,求最小的价值和。

Piggy-Bank

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)

Total Submission(s): 24389    Accepted Submission(s): 12367


Problem Description
Before ACM can do anything, a budget must be prepared and the necessary financial support obtained. The main income for this action comes from Irreversibly Bound Money (IBM). The idea
behind is simple. Whenever some ACM member has any small money, he takes all the coins and throws them into a piggy-bank. You know that this process is irreversible, the coins cannot be removed without breaking the pig. After a sufficiently long time, there
should be enough cash in the piggy-bank to pay everything that needs to be paid.


But there is a big problem with piggy-banks. It is not possible to determine how much money is inside. So we might break the pig into pieces only to find out that there is not enough money. Clearly, we want to avoid this unpleasant situation. The only possibility
is to weigh the piggy-bank and try to guess how many coins are inside. Assume that we are able to determine the weight of the pig exactly and that we know the weights of all coins of a given currency. Then there is some minimum amount of money in the piggy-bank
that we can guarantee. Your task is to find out this worst case and determine the minimum amount of cash inside the piggy-bank. We need your help. No more prematurely broken pigs!
 

Input
The input consists of T test cases. The number of them (T) is given on the first line of the input file. Each test case begins with a line containing two integers E and F. They indicate
the weight of an empty pig and of the pig filled with coins. Both weights are given in grams. No pig will weigh more than 10 kg, that means 1 <= E <= F <= 10000. On the second line of each test case, there is an integer number N (1 <= N <= 500) that gives
the number of various coins used in the given currency. Following this are exactly N lines, each specifying one coin type. These lines contain two integers each, Pand W (1 <= P <= 50000, 1 <= W <=10000). P is the value of the coin in monetary units, W is it's
weight in grams.
 

Output
Print exactly one line of output for each test case. The line must contain the sentence "The minimum amount of money in the piggy-bank is X." where X is the minimum amount of money that
can be achieved using coins with the given total weight. If the weight cannot be reached exactly, print a line "This is impossible.".
 

Sample Input

3
10 110
2
1 1
30 50
10 110
2
1 1
50 30
1 6
2
10 3
20 4
 

Sample Output

The minimum amount of money in the piggy-bank is 60.
The minimum amount of money in the piggy-bank is 100.
This is impossible.
#include<stdio.h>
#include<cstring>
#include<algorithm>
using namespace std; const int INF = 0x7ffffff;//可以这样规定最大值
struct t
{
int we;
int va;
} ty[510];
int main()
{
int t;
scanf("%d",&t);
while(t--)
{
int e,f;
scanf("%d%d",&e,&f);
int W = f - e;
int d[10100];
int n;
scanf("%d",&n);
for(int i=1;i<=W;i++)
d[i] = INF;
d[0] = 0;//很关键的初始化
for(int i=0; i<n; i++)
{
scanf("%d%d",&ty[i].va,&ty[i].we);
for(int j=ty[i].we;j<=W;j++)
{
if(d[j] > d[j-ty[i].we] + ty[i].va)
d[j] = d[j-ty[i].we] + ty[i].va;
}
}
if(d[W] == INF)
printf("This is impossible.\n");
else
printf("The minimum amount of money in the piggy-bank is %d.\n",d[W]);
}
return 0;
}

动态规划:完全背包问题-HDU1114-Piggy-Bank的更多相关文章

  1. [Dynamic Programming]动态规划之背包问题

    动态规划之背包问题 例题 现有4样物品n = ['a', 'b', 'c', 'd'],重量分别为w = [2, 4, 5, 3],价值分别为v = [5, 4, 6, 2].背包最大承重c = 9. ...

  2. 记录结果再利用的"动态规划"之背包问题

    参考<挑战程序设计竞赛>p51 https://www.cnblogs.com/Ymir-TaoMee/p/9419377.html 01背包问题 问题描述:有n个重量和价值分别为wi.v ...

  3. 动态规划_01背包问题_Java实现

    原文地址:http://blog.csdn.net/ljmingcom304/article/details/50328141 本文出自:[梁敬明的博客] 1.动态规划 什么是动态规划?动态规划就是将 ...

  4. 【动态规划/多重背包问题】POJ1014-Dividing

    多重背包问题的优化版来做,详见之前的动态规划读书笔记. dp[i][j]表示前i中数加得到j时第i种数最多剩余几个(不能加和得到i的情况下为-1)递推式为: dp[i][j]=mi(dp[i-1][j ...

  5. 【Luogu】【关卡2-15】动态规划的背包问题(2017年10月)【还差一道题】

    任务说明:这是最基础的动态规划.不过如果是第一次接触会有些难以理解.加油闯过这个坎. 01背包二维数组优化成滚动数组的时候有坑有坑有坑!!!必须要downto,downto,downto 情景和代码见 ...

  6. python 动态规划(背包问题和最长公共子串)

    背包问题 现在要往一个可以装4个单位重量的背包里怎么装价值最高:A重量1个单位,价值15:B重量3个单位,价值20:C重量4个重量,价值30 使用动态规划填充空格 class SolutionBag: ...

  7. poj 1742 Coins (动态规划,背包问题)

    Coins Time Limit: 3000MS   Memory Limit: 30000K Total Submissions: 32977   Accepted: 11208 Descripti ...

  8. 九度OJ 1455 珍惜现在,感恩生活 -- 动态规划(背包问题)

    题目地址:http://ac.jobdu.com/problem.php?pid=1455 题目描述: 为了挽救灾区同胞的生命,心系灾区同胞的你准备自己采购一些粮食支援灾区,现在假设你一共有资金n元, ...

  9. 记忆搜索与动态规划——DP背包问题

    题目描述 01背包问题 有n个重量和价值分别为\(w_i,v_i\)的物品.从这些物品中挑选出总重量不超过W的物品,求所有挑选方案中价值中总和的最大值. 限制条件 1 <= n <= 10 ...

  10. 用js实现动态规划解决背包问题

    动态规划的原理: 移至到该同学的博文中,讲解的声动易懂 https://www.jianshu.com/p/a66d5ce49df5 现在主要是用js来实现动态规划 function bb(v, w, ...

随机推荐

  1. 发布MVC网站的时候出现缺少WebHost等程序集问题的解决办法

    将一下几个dll 拷贝到bin文件夹下就行 链接:https://pan.baidu.com/s/17xhTdakzM_SQmOjJdZvviw 密码:c976

  2. Ecshop如何解决Deprecated: preg_replace()报错

    今天安装Ecshop后,运行出现各种问题,其中 Deprecated: preg_replace() 之类的报错最多,下面贴出解决方案: 错误原因: preg_replace() 函数中用到的修饰符 ...

  3. 一起来学Spring Cloud | 第一章 :如何搭建一个多模块的springcloud项目

    在spring cloud系列章节中,本来已经写了几个章节了,但是自己看起来有些东西写得比较杂,所以重构了一下springcloud的章节内容,新写了本章节,先教大家在工作中如何搭建一个多模块的spr ...

  4. Mavlink协议理解

    来源:blog.csdn.net/super_mice/article/details/44836585 之前看了mavlink协议,网上关于mavlink的资料不多.本文大概总结了下对mavlink ...

  5. AngularJS(九):路由

    本文也同步发表在我的公众号“我的天空” AngularJS路由 AngularJS路由可以让我们通过不同的URL访问不同页面(似乎是废话),其价值主要体现在单页面的web应用中(single page ...

  6. 构建第一个spring boot2.0应用之项目启动运行的几种方式(二)

    方法一. 配置Run/Debug Configuration  选择Main Class为项目 Application启动类(入口main方法) (2).进行项目目录,即包含pom.xml的目录下,启 ...

  7. 在一个css文件中引入其他css文件

    @import "./main.css";@import "./color-dark.css";@import "./reset.css";

  8. IOS 图形上下文栈

    - (void)drawRect:(CGRect)rect { // 获取上下文 CGContextRef ctx = UIGraphicsGetCurrentContext(); // 保存一份最纯 ...

  9. 自动释放池的前世今生 ---- 深入解析 autoreleasepool

    http://draveness.me/autoreleasepool.html 关注仓库,及时获得更新:iOS-Source-Code-Analyze Follow: Draveness · Git ...

  10. python_67_生成器3

    import time def consumer(name): print("%s 准备吃包子啦!"%name) while True: baozi = yield print(& ...