collections模块简介
除python提供的内置数据类型(int、float、str、list、tuple、dict)外,collections模块还提供了其他数据类型,使用如下功能需先导入collections模块(import collections):
- 计数器(counter)
- 有序字典(orderedDict)
- 默认字典(defaultdict)
- 可命名元组(namedtuple)
- 双向队列(deque)
一、 计数器(Counter):
作用: 统计元素的个数,并以字典形式返回{元素:元素个数}
class Counter(dict):
# class Counter(dict) 表示Counter类继承dict类,既子类继承父类所有功能
'''Dict subclass for counting hashable items. Sometimes called a bag
or multiset. Elements are stored as dictionary keys and their counts
are stored as dictionary values. >>> c = Counter('abcdeabcdabcaba') # count elements from a string >>> c.most_common(3) # three most common elements
[('a', 5), ('b', 4), ('c', 3)]
>>> sorted(c) # list all unique elements
['a', 'b', 'c', 'd', 'e']
>>> ''.join(sorted(c.elements())) # list elements with repetitions
'aaaaabbbbcccdde'
>>> sum(c.values()) # total of all counts
15 >>> c['a'] # count of letter 'a'
5
>>> for elem in 'shazam': # update counts from an iterable
... c[elem] += 1 # by adding 1 to each element's count
>>> c['a'] # now there are seven 'a'
7
>>> del c['b'] # remove all 'b'
>>> c['b'] # now there are zero 'b'
0 >>> d = Counter('simsalabim') # make another counter
>>> c.update(d) # add in the second counter
>>> c['a'] # now there are nine 'a'
9 >>> c.clear() # empty the counter
>>> c
Counter() Note: If a count is set to zero or reduced to zero, it will remain
in the counter until the entry is deleted or the counter is cleared: >>> c = Counter('aaabbc')
>>> c['b'] -= 2 # reduce the count of 'b' by two
>>> c.most_common() # 'b' is still in, but its count is zero
[('a', 3), ('c', 1), ('b', 0)] '''
# References:
# http://en.wikipedia.org/wiki/Multiset
# http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
# http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm
# http://code.activestate.com/recipes/259174/
# Knuth, TAOCP Vol. II section 4.6.3 def __init__(*args, **kwds):
'''Create a new, empty Counter object. And if given, count elements
from an input iterable. Or, initialize the count from another mapping
of elements to their counts. >>> c = Counter() # a new, empty counter
>>> c = Counter('gallahad') # a new counter from an iterable
>>> c = Counter({'a': 4, 'b': 2}) # a new counter from a mapping
>>> c = Counter(a=4, b=2) # a new counter from keyword args '''
if not args:
raise TypeError("descriptor '__init__' of 'Counter' object "
"needs an argument")
self, *args = args
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
super(Counter, self).__init__()
self.update(*args, **kwds) def __missing__(self, key):
'The count of elements not in the Counter is zero.'
# Needed so that self[missing_item] does not raise KeyError
return 0 def most_common(self, n=None):
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.items(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.items(), key=_itemgetter(1)) def elements(self):
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product
1836 Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it. '''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.items())) # Override dict methods where necessary @classmethod
def fromkeys(cls, iterable, v=None):
# There is no equivalent method for counters because setting v=1
# means that no element can have a count greater than one.
raise NotImplementedError(
'Counter.fromkeys() is undefined. Use Counter(iterable) instead.') def update(*args, **kwds):
'''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch
4 '''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts. if not args:
raise TypeError("descriptor 'update' of 'Counter' object "
"needs an argument")
self, *args = args
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
iterable = args[0] if args else None
if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.items():
self[elem] = count + self_get(elem, 0)
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
_count_elements(self, iterable)
if kwds:
self.update(kwds) def subtract(*args, **kwds):
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
0
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if not args:
raise TypeError("descriptor 'subtract' of 'Counter' object "
"needs an argument")
self, *args = args
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
iterable = args[0] if args else None
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds) def copy(self):
'Return a shallow copy.'
return self.__class__(self) def __reduce__(self):
return self.__class__, (dict(self),) def __delitem__(self, elem):
'Like dict.__delitem__() but does not raise KeyError for missing values.'
if elem in self:
super().__delitem__(elem) def __repr__(self):
if not self:
return '%s()' % self.__class__.__name__
try:
items = ', '.join(map('%r: %r'.__mod__, self.most_common()))
return '%s({%s})' % (self.__class__.__name__, items)
except TypeError:
# handle case where values are not orderable
return '{0}({1!r})'.format(self.__class__.__name__, dict(self)) # Multiset-style mathematical operations discussed in:
# Knuth TAOCP Volume II section 4.6.3 exercise 19
# and at http://en.wikipedia.org/wiki/Multiset
#
# Outputs guaranteed to only include positive counts.
#
# To strip negative and zero counts, add-in an empty counter:
# c += Counter() def __add__(self, other):
'''Add counts from two counters. >>> Counter('abbb') + Counter('bcc')
Counter({'b': 4, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count + other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __sub__(self, other):
''' Subtract count, but keep only results with positive counts. >>> Counter('abbbc') - Counter('bccd')
Counter({'b': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
newcount = count - other[elem]
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count < 0:
result[elem] = 0 - count
return result def __or__(self, other):
'''Union is the maximum of value in either of the input counters. >>> Counter('abbb') | Counter('bcc')
Counter({'b': 3, 'c': 2, 'a': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = other_count if count < other_count else count
if newcount > 0:
result[elem] = newcount
for elem, count in other.items():
if elem not in self and count > 0:
result[elem] = count
return result def __and__(self, other):
''' Intersection is the minimum of corresponding counts. >>> Counter('abbb') & Counter('bcc')
Counter({'b': 1}) '''
if not isinstance(other, Counter):
return NotImplemented
result = Counter()
for elem, count in self.items():
other_count = other[elem]
newcount = count if count < other_count else other_count
if newcount > 0:
result[elem] = newcount
return result def __pos__(self):
'Adds an empty counter, effectively stripping negative and zero counts'
result = Counter()
for elem, count in self.items():
if count > 0:
result[elem] = count
return result def __neg__(self):
'''Subtracts from an empty counter. Strips positive and zero counts,
and flips the sign on negative counts. '''
result = Counter()
for elem, count in self.items():
if count < 0:
result[elem] = 0 - count
return result def _keep_positive(self):
'''Internal method to strip elements with a negative or zero count'''
nonpositive = [elem for elem, count in self.items() if not count > 0]
for elem in nonpositive:
del self[elem]
return self def __iadd__(self, other):
'''Inplace add from another counter, keeping only positive counts. >>> c = Counter('abbb')
>>> c += Counter('bcc')
>>> c
Counter({'b': 4, 'c': 2, 'a': 1}) '''
for elem, count in other.items():
self[elem] += count
return self._keep_positive() def __isub__(self, other):
'''Inplace subtract counter, but keep only results with positive counts. >>> c = Counter('abbbc')
>>> c -= Counter('bccd')
>>> c
Counter({'b': 2, 'a': 1}) '''
for elem, count in other.items():
self[elem] -= count
return self._keep_positive() def __ior__(self, other):
'''Inplace union is the maximum of value from either counter. >>> c = Counter('abbb')
>>> c |= Counter('bcc')
>>> c
Counter({'b': 3, 'c': 2, 'a': 1}) '''
for elem, other_count in other.items():
count = self[elem]
if other_count > count:
self[elem] = other_count
return self._keep_positive() def __iand__(self, other):
'''Inplace intersection is the minimum of corresponding counts. >>> c = Counter('abbb')
>>> c &= Counter('bcc')
>>> c
Counter({'b': 1}) '''
for elem, count in self.items():
other_count = other[elem]
if other_count < count:
self[elem] = other_count
return self._keep_positive()
Counter类包含方法如下:
1. most_common:
作用: 将元素出现的次数按照从高到低进行排序,并返回前N个元素,若多个元素统计数相同,按照字母顺序排列,N若未指定,则返回所有元素
def most_common(self, n=None):
'''List the n most common elements and their counts from the most
common to the least. If n is None, then list all element counts. >>> Counter('abcdeabcdabcaba').most_common(3)
[('a', 5), ('b', 4), ('c', 3)] '''
# Emulate Bag.sortedByCount from Smalltalk
if n is None:
return sorted(self.items(), key=_itemgetter(1), reverse=True)
return _heapq.nlargest(n, self.items(), key=_itemgetter(1))
2. elements:
作用: 返回一个迭代器,元素被重复多少次,在迭代器中就包含多少个此元素,所有元素按字母序排列,个数<1的不罗列
def elements(self):
'''Iterator over elements repeating each as many times as its count. >>> c = Counter('ABCABC')
>>> sorted(c.elements())
['A', 'A', 'B', 'B', 'C', 'C'] # Knuth's example for prime factors of 1836: 2**2 * 3**3 * 17**1
>>> prime_factors = Counter({2: 2, 3: 3, 17: 1})
>>> product = 1
>>> for factor in prime_factors.elements(): # loop over factors
... product *= factor # and multiply them
>>> product
1836 Note, if an element's count has been set to zero or is a negative
number, elements() will ignore it. '''
# Emulate Bag.do from Smalltalk and Multiset.begin from C++.
return _chain.from_iterable(_starmap(_repeat, self.items()))
3. update:
作用: 增加元素的重复次数
def update(*args, **kwds):
'''Like dict.update() but add counts instead of replacing them. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.update('witch') # add elements from another iterable
>>> d = Counter('watch')
>>> c.update(d) # add elements from another counter
>>> c['h'] # four 'h' in which, witch, and watch
4 '''
# The regular dict.update() operation makes no sense here because the
# replace behavior results in the some of original untouched counts
# being mixed-in with all of the other counts for a mismash that
# doesn't have a straight-forward interpretation in most counting
# contexts. Instead, we implement straight-addition. Both the inputs
# and outputs are allowed to contain zero and negative counts. if not args:
raise TypeError("descriptor 'update' of 'Counter' object "
"needs an argument")
self, *args = args
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
iterable = args[0] if args else None
if iterable is not None:
if isinstance(iterable, Mapping):
if self:
self_get = self.get
for elem, count in iterable.items():
self[elem] = count + self_get(elem, 0)
else:
super(Counter, self).update(iterable) # fast path when counter is empty
else:
_count_elements(self, iterable)
if kwds:
self.update(kwds)
4. subtract:
作用: 减少元素重复次数
def subtract(*args, **kwds):
'''Like dict.update() but subtracts counts instead of replacing them.
Counts can be reduced below zero. Both the inputs and outputs are
allowed to contain zero and negative counts. Source can be an iterable, a dictionary, or another Counter instance. >>> c = Counter('which')
>>> c.subtract('witch') # subtract elements from another iterable
>>> c.subtract(Counter('watch')) # subtract elements from another counter
>>> c['h'] # 2 in which, minus 1 in witch, minus 1 in watch
0
>>> c['w'] # 1 in which, minus 1 in witch, minus 1 in watch
-1 '''
if not args:
raise TypeError("descriptor 'subtract' of 'Counter' object "
"needs an argument")
self, *args = args
if len(args) > 1:
raise TypeError('expected at most 1 arguments, got %d' % len(args))
iterable = args[0] if args else None
if iterable is not None:
self_get = self.get
if isinstance(iterable, Mapping):
for elem, count in iterable.items():
self[elem] = self_get(elem, 0) - count
else:
for elem in iterable:
self[elem] = self_get(elem, 0) - 1
if kwds:
self.subtract(kwds)
二、有序字典(orderedDict):
描述: 继承了dict的所有功能,dict是无序的,orderedDict刚好对dict作了补充,记录了键值对插入的顺序,是有序字典
class OrderedDict(dict):
'Dictionary that remembers insertion order'
# An inherited dict maps keys to values.
# The inherited dict provides __getitem__, __len__, __contains__, and get.
# The remaining methods are order-aware.
# Big-O running times for all methods are the same as regular dictionaries. # The internal self.__map dict maps keys to links in a doubly linked list.
# The circular doubly linked list starts and ends with a sentinel element.
# The sentinel element never gets deleted (this simplifies the algorithm).
# The sentinel is in self.__hardroot with a weakref proxy in self.__root.
# The prev links are weakref proxies (to prevent circular references).
# Individual links are kept alive by the hard reference in self.__map.
# Those hard references disappear when a key is deleted from an OrderedDict. def __init__(*args, **kwds):
'''Initialize an ordered dictionary. The signature is the same as
regular dictionaries, but keyword arguments are not recommended because
their insertion order is arbitrary. '''
if not args:
raise TypeError("descriptor '__init__' of 'OrderedDict' object "
"needs an argument")
self, *args = args
if len(args) > :
raise TypeError('expected at most 1 arguments, got %d' % len(args))
try:
self.__root
except AttributeError:
self.__hardroot = _Link()
self.__root = root = _proxy(self.__hardroot)
root.prev = root.next = root
self.__map = {}
self.__update(*args, **kwds) def __setitem__(self, key, value,
dict_setitem=dict.__setitem__, proxy=_proxy, Link=_Link):
'od.__setitem__(i, y) <==> od[i]=y'
# Setting a new item creates a new link at the end of the linked list,
# and the inherited dictionary is updated with the new key/value pair.
if key not in self:
self.__map[key] = link = Link()
root = self.__root
last = root.prev
link.prev, link.next, link.key = last, root, key
last.next = link
root.prev = proxy(link)
dict_setitem(self, key, value) def __delitem__(self, key, dict_delitem=dict.__delitem__):
'od.__delitem__(y) <==> del od[y]'
# Deleting an existing item uses self.__map to find the link which gets
# removed by updating the links in the predecessor and successor nodes.
dict_delitem(self, key)
link = self.__map.pop(key)
link_prev = link.prev
link_next = link.next
link_prev.next = link_next
link_next.prev = link_prev
link.prev = None
link.next = None def __iter__(self):
'od.__iter__() <==> iter(od)'
# Traverse the linked list in order.
root = self.__root
curr = root.next
while curr is not root:
yield curr.key
curr = curr.next def __reversed__(self):
'od.__reversed__() <==> reversed(od)'
# Traverse the linked list in reverse order.
root = self.__root
curr = root.prev
while curr is not root:
yield curr.key
curr = curr.prev def clear(self):
'od.clear() -> None. Remove all items from od.'
root = self.__root
root.prev = root.next = root
self.__map.clear()
dict.clear(self) def popitem(self, last=True):
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false. '''
if not self:
raise KeyError('dictionary is empty')
root = self.__root
if last:
link = root.prev
link_prev = link.prev
link_prev.next = root
root.prev = link_prev
else:
link = root.next
link_next = link.next
root.next = link_next
link_next.prev = root
key = link.key
del self.__map[key]
value = dict.pop(self, key)
return key, value def move_to_end(self, key, last=True):
'''Move an existing element to the end (or beginning if last==False). Raises KeyError if the element does not exist.
When last=True, acts like a fast version of self[key]=self.pop(key). '''
link = self.__map[key]
link_prev = link.prev
link_next = link.next
soft_link = link_next.prev
link_prev.next = link_next
link_next.prev = link_prev
root = self.__root
if last:
last = root.prev
link.prev = last
link.next = root
root.prev = soft_link
last.next = link
else:
first = root.next
link.prev = root
link.next = first
first.prev = soft_link
root.next = link def __sizeof__(self):
sizeof = _sys.getsizeof
n = len(self) + # number of links including root
size = sizeof(self.__dict__) # instance dictionary
size += sizeof(self.__map) * # internal dict and inherited dict
size += sizeof(self.__hardroot) * n # link objects
size += sizeof(self.__root) * n # proxy objects
return size update = __update = MutableMapping.update def keys(self):
"D.keys() -> a set-like object providing a view on D's keys"
return _OrderedDictKeysView(self) def items(self):
"D.items() -> a set-like object providing a view on D's items"
return _OrderedDictItemsView(self) def values(self):
"D.values() -> an object providing a view on D's values"
return _OrderedDictValuesView(self) __ne__ = MutableMapping.__ne__ __marker = object() def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError
is raised. '''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default def setdefault(self, key, default=None):
'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
if key in self:
return self[key]
self[key] = default
return default @_recursive_repr()
def __repr__(self):
'od.__repr__() <==> repr(od)'
if not self:
return '%s()' % (self.__class__.__name__,)
return '%s(%r)' % (self.__class__.__name__, list(self.items())) def __reduce__(self):
'Return state information for pickling'
inst_dict = vars(self).copy()
for k in vars(OrderedDict()):
inst_dict.pop(k, None)
return self.__class__, (), inst_dict or None, None, iter(self.items()) def copy(self):
'od.copy() -> a shallow copy of od'
return self.__class__(self) @classmethod
def fromkeys(cls, iterable, value=None):
'''OD.fromkeys(S[, v]) -> New ordered dictionary with keys from S.
If not specified, the value defaults to None. '''
self = cls()
for key in iterable:
self[key] = value
return self def __eq__(self, other):
'''od.__eq__(y) <==> od==y. Comparison to another OD is order-sensitive
while comparison to a regular mapping is order-insensitive. '''
if isinstance(other, OrderedDict):
return dict.__eq__(self, other) and all(map(_eq, self, other))
return dict.__eq__(self, other) try:
from _collections import OrderedDict
except ImportError:
# Leave the pure Python version in place.
pass
说明:python v3.6之前的版本dict是无序的,3.6版本之后(含v3.6)dict是有序的,目测为了兼容性以及100%有序性考虑,建议实现有序功能时使用orderedDict
orderedDict类补充方法:
1. clear:
作用: 清空字典
def clear(self):
'od.clear() -> None. Remove all items from od.'
root = self.__root
root.prev = root.next = root
self.__map.clear()
dict.clear(self)
2. popitem:
作用: 有序删除,类似于栈,按照后进先出的顺序依次删除
def popitem(self, last=True):
'''od.popitem() -> (k, v), return and remove a (key, value) pair.
Pairs are returned in LIFO order if last is true or FIFO order if false. '''
if not self:
raise KeyError('dictionary is empty')
root = self.__root
if last:
link = root.prev
link_prev = link.prev
link_prev.next = root
root.prev = link_prev
else:
link = root.next
link_next = link.next
root.next = link_next
link_next.prev = root
key = link.key
del self.__map[key]
value = dict.pop(self, key)
return key, value
3. pop:
作用: 删除指定键值对
def pop(self, key, default=__marker):
'''od.pop(k[,d]) -> v, remove specified key and return the corresponding
value. If key is not found, d is returned if given, otherwise KeyError
is raised. '''
if key in self:
result = self[key]
del self[key]
return result
if default is self.__marker:
raise KeyError(key)
return default
4. move_to_end:
作用: 将指定键值对移到最后位置
def move_to_end(self, key, last=True):
'''Move an existing element to the end (or beginning if last==False). Raises KeyError if the element does not exist.
When last=True, acts like a fast version of self[key]=self.pop(key). '''
link = self.__map[key]
link_prev = link.prev
link_next = link.next
soft_link = link_next.prev
link_prev.next = link_next
link_next.prev = link_prev
root = self.__root
if last:
last = root.prev
link.prev = last
link.next = root
root.prev = soft_link
last.next = link
else:
first = root.next
link.prev = root
link.next = first
first.prev = soft_link
root.next = link
5. setdefault:
作用: 设置默认值,默认为None,也可指定值
def setdefault(self, key, default=None):
'od.setdefault(k[,d]) -> od.get(k,d), also set od[k]=d if k not in od'
if key in self:
return self[key]
self[key] = default
return default
6. update:
作用: 更新字典,有则更新,无则添加
三、默认字典(defaultdict)
描述:设置values默认类型,如list、tuple
class defaultdict(dict):
"""
defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce
a new value when a key is not present, in __getitem__ only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments.
"""
def copy(self): # real signature unknown; restored from __doc__
""" D.copy() -> a shallow copy of D. """
pass def __copy__(self, *args, **kwargs): # real signature unknown
""" D.copy() -> a shallow copy of D. """
pass def __getattribute__(self, *args, **kwargs): # real signature unknown
""" Return getattr(self, name). """
pass def __init__(self, default_factory=None, **kwargs): # known case of _collections.defaultdict.__init__
"""
defaultdict(default_factory[, ...]) --> dict with default factory The default factory is called without arguments to produce
a new value when a key is not present, in __getitem__ only.
A defaultdict compares equal to a dict with the same items.
All remaining arguments are treated the same as if they were
passed to the dict constructor, including keyword arguments. # (copied from class doc)
"""
pass def __missing__(self, key): # real signature unknown; restored from __doc__
"""
__missing__(key) # Called by __getitem__ for missing key; pseudo-code:
if self.default_factory is None: raise KeyError((key,))
self[key] = value = self.default_factory()
return value
"""
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self, *args, **kwargs): # real signature unknown
""" Return repr(self). """
pass default_factory = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""Factory for default value called by __missing__()."""
四、可命名元组(namedtuple):
描述: 可通过名称访问元组中的元素,提高代码可读性
def namedtuple(typename, field_names, *, verbose=False, rename=False, module=None):
"""Returns a new subclass of tuple with named fields. >>> Point = namedtuple('Point', ['x', 'y'])
>>> Point.__doc__ # docstring for the new class
'Point(x, y)'
>>> p = Point(11, y=22) # instantiate with positional args or keywords
>>> p[0] + p[1] # indexable like a plain tuple
33
>>> x, y = p # unpack like a regular tuple
>>> x, y
(11, 22)
>>> p.x + p.y # fields also accessible by name
33
>>> d = p._asdict() # convert to a dictionary
>>> d['x']
11
>>> Point(**d) # convert from a dictionary
Point(x=11, y=22)
>>> p._replace(x=100) # _replace() is like str.replace() but targets named fields
Point(x=100, y=22) """ # Validate the field names. At the user's option, either generate an error
# message or automatically replace the field name with a valid name.
if isinstance(field_names, str):
field_names = field_names.replace(',', ' ').split()
field_names = list(map(str, field_names))
typename = str(typename)
if rename:
seen = set()
for index, name in enumerate(field_names):
if (not name.isidentifier()
or _iskeyword(name)
or name.startswith('_')
or name in seen):
field_names[index] = '_%d' % index
seen.add(name)
for name in [typename] + field_names:
if type(name) is not str:
raise TypeError('Type names and field names must be strings')
if not name.isidentifier():
raise ValueError('Type names and field names must be valid '
'identifiers: %r' % name)
if _iskeyword(name):
raise ValueError('Type names and field names cannot be a '
'keyword: %r' % name)
seen = set()
for name in field_names:
if name.startswith('_') and not rename:
raise ValueError('Field names cannot start with an underscore: '
'%r' % name)
if name in seen:
raise ValueError('Encountered duplicate field name: %r' % name)
seen.add(name) # Fill-in the class template
class_definition = _class_template.format(
typename = typename,
field_names = tuple(field_names),
num_fields = len(field_names),
arg_list = repr(tuple(field_names)).replace("'", "")[1:-1],
repr_fmt = ', '.join(_repr_template.format(name=name)
for name in field_names),
field_defs = '\n'.join(_field_template.format(index=index, name=name)
for index, name in enumerate(field_names))
) # Execute the template string in a temporary namespace and support
# tracing utilities by setting a value for frame.f_globals['__name__']
namespace = dict(__name__='namedtuple_%s' % typename)
exec(class_definition, namespace)
result = namespace[typename]
result._source = class_definition
if verbose:
print(result._source) # For pickling to work, the __module__ variable needs to be set to the frame
# where the named tuple is created. Bypass this step in environments where
# sys._getframe is not defined (Jython for example) or sys._getframe is not
# defined for arguments greater than 0 (IronPython), or where the user has
# specified a particular module.
if module is None:
try:
module = _sys._getframe(1).f_globals.get('__name__', '__main__')
except (AttributeError, ValueError):
pass
if module is not None:
result.__module__ = module return result
【示例】
>>> import colletcions #导入collections模块
>>> TupleName=collections.namedtuple('TupleName',['a','b','c']) #通过namedtuple自定义一个TupleName类
>>> obj=TupleName(11,22,33) #通过类创建对象obj
>>> obj.a
>>> 11 #通过名称访问元组中的元素
>>> obj.b
>>> 22
>>> obj.a*obj.c
>>> 363
五、双向队列(deque):
描述: 类似于list,允许两端操作元素
class deque(object):
"""
deque([iterable[, maxlen]]) --> deque object A list-like sequence optimized for data accesses near its endpoints.
"""
def append(self, *args, **kwargs): # real signature unknown
# 添加元素至双向队列右侧
""" Add an element to the right side of the deque. """
pass def appendleft(self, *args, **kwargs): # real signature unknown
# 添加元素至双向队列左侧
""" Add an element to the left side of the deque. """
pass def clear(self, *args, **kwargs): # real signature unknown
# 清空队列
""" Remove all elements from the deque. """
pass def copy(self, *args, **kwargs): # real signature unknown
# 浅拷贝
""" Return a shallow copy of a deque. """
pass def count(self, value): # real signature unknown; restored from __doc__
# 统计队列中元素出现的次数
""" D.count(value) -> integer -- return number of occurrences of value """
return 0 def extend(self, *args, **kwargs): # real signature unknown
# 从队列右侧扩展,可以是list、tuple、dict(取keys)
""" Extend the right side of the deque with elements from the iterable """
pass def extendleft(self, *args, **kwargs): # real signature unknown
# 从队列左侧扩展多个元素
""" Extend the left side of the deque with elements from the iterable """
pass def index(self, value, start=None, stop=None): # real signature unknown; restored from __doc__
# 默认从左取值的索引位置,也可指定查询范围,若有多个相同值,则取第一个值的索引位置
"""
D.index(value, [start, [stop]]) -> integer -- return first index of value.
Raises ValueError if the value is not present.
"""
return 0 def insert(self, index, p_object): # real signature unknown; restored from __doc__
# 任意往指定索引位置插入值
""" D.insert(index, object) -- insert object before index """
pass def pop(self, *args, **kwargs): # real signature unknown
# 默认从队列右侧取值并移除
""" Remove and return the rightmost element. """
pass def popleft(self, *args, **kwargs): # real signature unknown
# 从队列左侧取值并移除
""" Remove and return the leftmost element. """
pass def remove(self, value): # real signature unknown; restored from __doc__
# 移除指定值
""" D.remove(value) -- remove first occurrence of value. """
pass def reverse(self): # real signature unknown; restored from __doc__
# 反转排序
""" D.reverse() -- reverse *IN PLACE* """
pass def rotate(self, *args, **kwargs): # real signature unknown
# 移动队列中的元素,若n<0,则将左侧n个元素依次移至队列最右侧,反之,若n>0,则将队列右侧n个元素依次移至队列最左侧
""" Rotate the deque n steps to the right (default n=1). If n is negative, rotates left. """
pass def __add__(self, *args, **kwargs): # real signature unknown
""" Return self+value. """
pass def __bool__(self, *args, **kwargs): # real signature unknown
""" self != 0 """
pass def __contains__(self, *args, **kwargs): # real signature unknown
""" Return key in self. """
pass def __copy__(self, *args, **kwargs): # real signature unknown
""" Return a shallow copy of a deque. """
pass def __delitem__(self, *args, **kwargs): # real signature unknown
""" Delete self[key]. """
pass def __eq__(self, *args, **kwargs): # real signature unknown
""" Return self==value. """
pass def __getattribute__(self, *args, **kwargs): # real signature unknown
""" Return getattr(self, name). """
pass def __getitem__(self, *args, **kwargs): # real signature unknown
""" Return self[key]. """
pass def __ge__(self, *args, **kwargs): # real signature unknown
""" Return self>=value. """
pass def __gt__(self, *args, **kwargs): # real signature unknown
""" Return self>value. """
pass def __iadd__(self, *args, **kwargs): # real signature unknown
""" Implement self+=value. """
pass def __imul__(self, *args, **kwargs): # real signature unknown
""" Implement self*=value. """
pass def __init__(self, iterable=(), maxlen=None): # known case of _collections.deque.__init__
"""
deque([iterable[, maxlen]]) --> deque object A list-like sequence optimized for data accesses near its endpoints.
# (copied from class doc)
"""
pass def __iter__(self, *args, **kwargs): # real signature unknown
""" Implement iter(self). """
pass def __len__(self, *args, **kwargs): # real signature unknown
""" Return len(self). """
pass def __le__(self, *args, **kwargs): # real signature unknown
""" Return self<=value. """
pass def __lt__(self, *args, **kwargs): # real signature unknown
""" Return self<value. """
pass def __mul__(self, *args, **kwargs): # real signature unknown
""" Return self*value.n """
pass @staticmethod # known case of __new__
def __new__(*args, **kwargs): # real signature unknown
""" Create and return a new object. See help(type) for accurate signature. """
pass def __ne__(self, *args, **kwargs): # real signature unknown
""" Return self!=value. """
pass def __reduce__(self, *args, **kwargs): # real signature unknown
""" Return state information for pickling. """
pass def __repr__(self, *args, **kwargs): # real signature unknown
""" Return repr(self). """
pass def __reversed__(self): # real signature unknown; restored from __doc__
""" D.__reversed__() -- return a reverse iterator over the deque """
pass def __rmul__(self, *args, **kwargs): # real signature unknown
""" Return self*value. """
pass def __setitem__(self, *args, **kwargs): # real signature unknown
""" Set self[key] to value. """
pass def __sizeof__(self): # real signature unknown; restored from __doc__
""" D.__sizeof__() -- size of D in memory, in bytes """
pass maxlen = property(lambda self: object(), lambda self, v: None, lambda self: None) # default
"""maximum size of a deque or None if unbounded""" __hash__ = None
deque类中包含方法:
1. append:
作用: 从队列右侧添加元素
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.append(11)
>>> deq
>>> deque(['a','b','c','d',11])
2.appendleft:
作用: 从队列左侧添加元素
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.appendleft(12)
>>> deq
>>> deque([12,'a','b','c','d'])
3.clear:
作用: 清空队列
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.clear()
>>> deq
>>> deque([])
4. count:
作用: 统计队列中元素个数
【示例】
>>> import collections
>>> deq=collections.deque('abcdaa')
>>> deq
>>> deque(['a','b','c','d','a','a'])
>>> deq.count('a')
>>> 3
5.extend:
作用: 从队列右侧扩展
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.extend(11,22,33)
>>> deq
>>> deque(['a','b','c','d',11,22,33])
6.extendleft:
作用: 从队列左侧扩展
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.extendleft({'k1':'v1','k2':'v2'}) # 扩展类型为dict,取keys
>>> deq
>>> deque(['k2','k1','a','b','c','d']) # 取dict中的keys,并从队列左侧依次插入
7.index:
作用: 取元素索引位置
【示例】
>>> import collections
>>> deq=collections.deque('abcdaa')
>>> deq
>>> deque(['a','b','c','d','a','a'])
>>> deq.index('a') # 默认从左侧开始检索
>>> 0
>>> deq.index('a',2,5) # 在查找范围内若有多个相同的值,返回第一个值的索引
>>> 4
8.insert:
作用: 在队列任意位置插入值
【示例】
>>> import collections
>>> deq=collections.deque('abcd')
>>> deq
>>> deque(['a','b','c','d'])
>>> deq.insert(1,11)
>>> deq
>>> deque(['a',11,'b','c','d'])
9. pop:
作用: 从队列右侧移除值
【示例】
>>> import collections
>>> deq=collections.deque('abcdef')
>>> deq
>>> deque(['a','b','c','d','e','f'])
>>> deq.pop()
>>> 'f'
>>> deq
>>> deque(['a','b','c','d','e'])
10.popleft:
作用: 从队列左侧移除值
【示例】
>>> import collections
>>> deq=collections.deque('abcdef')
>>> deq
>>> deque(['a','b','c','d','e','f'])
>>> deq.popleft()
>>> 'a'
>>> deq
>>> deque(['b','c','d','e','f'])
11. remove:
作用: 移除指定值
【示例】
>>> import collections
>>> deq=collections.deque('abcdef')
>>> deq
>>> deque(['a','b','c','d','e','f'])
>>> deq.remove('c')
>>> deq
>>> deque(['a','b','d','e','f'])
12.reverse:
作用: 将队列中的元素反转
【示例】
>>> import collections
>>> deq=collections.deque('abcdef')
>>> deq
>>> deque(['a','b','c','d','e','f'])
>>> deq.reverse()
>>> deq
>>> deque(['f','e','d','c',b','a'])
13. rotate:
作用: 移动队列中的元素,若n<0,则将队列最左侧的元素依次移动至最右侧,反之,n>0,将队列最右侧元素移动至最左侧
【示例】
>>> import collections
>>> deq=collections.deque('abcdef') #创建队列
>>> deq
>>> deque(['a','b','c','d','e','f'])
>>> deq.rotate(-2) # n<0,依次移动最左侧2个元素至队列最右侧
>>> deq
>>> deque(['c','d','e','f','a','b'])
>>> deq.append(11) # 在队列最右侧插入元素
>>> deq
>>> deque(['c','d','e','f','a','b',11])
>>> deq.rotate(2) # n>0,依次移动右侧2个元素至队列最左侧
>>> deq
>>> deque(['b',11,'c','d','e','f','a'])
上述既然提到了双向队列,那肯定也存在单项队列,双向队列存在于collections模块中,允许对元素两端进行操作,而单项队列存在于queue模块中,遵循先进先出原则,只能一端进,一端出
queue模块中方法简介:
1. empty:
作用: 判断队列是否为空,是返回True
def empty(self):
'''Return True if the queue is empty, False otherwise (not reliable!). This method is likely to be removed at some point. Use qsize() == 0
as a direct substitute, but be aware that either approach risks a race
condition where a queue can grow before the result of empty() or
qsize() can be used. To create code that needs to wait for all queued tasks to be
completed, the preferred technique is to use the join() method.
'''
with self.mutex:
return not self._qsize()
【示例】
>>> import queue
>>> que=queue.Queue() # 表示队列的长度,即元素个数,
>>> que.empty() # 清空队列,并且判断队列是否为空,是返回True
>>> True
2.full:
作用: 判断队列是否已满,是返回True
def full(self):
'''Return True if the queue is full, False otherwise (not reliable!). This method is likely to be removed at some point. Use qsize() >= n
as a direct substitute, but be aware that either approach risks a race
condition where a queue can shrink before the result of full() or
qsize() can be used.
'''
with self.mutex:
return 0 < self.maxsize <= self._qsize()
【示例】
>>> import queue
>>> que=queue.Queue(2) # 表示队列的长度,即元素个数,
>>> que.put('a') # 向队列中添加元素
>>> que.full() # 此时队列中有1个元素,即长度为1
>>> False
>>> que.put('b') # 此时队列中有2个元素,即长度为2,已满
>>> que.full()
>>> True
3. put:
作用后: 往队列中放一个元素,get:依据先进先出原则,依次从队列取元素
def put(self, item, block=True, timeout=None):
'''Put an item into the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until a free slot is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Full exception if no free slot was available within that time.
Otherwise ('block' is false), put an item on the queue if a free slot
is immediately available, else raise the Full exception ('timeout'
is ignored in that case).
'''
with self.not_full:
if self.maxsize > 0:
if not block:
if self._qsize() >= self.maxsize:
raise Full
elif timeout is None:
while self._qsize() >= self.maxsize:
self.not_full.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = time() + timeout
while self._qsize() >= self.maxsize:
remaining = endtime - time()
if remaining <= 0.0:
raise Full
self.not_full.wait(remaining)
self._put(item)
self.unfinished_tasks += 1
self.not_empty.notify()
put
def get(self, block=True, timeout=None):
'''Remove and return an item from the queue. If optional args 'block' is true and 'timeout' is None (the default),
block if necessary until an item is available. If 'timeout' is
a non-negative number, it blocks at most 'timeout' seconds and raises
the Empty exception if no item was available within that time.
Otherwise ('block' is false), return an item if one is immediately
available, else raise the Empty exception ('timeout' is ignored
in that case).
'''
with self.not_empty:
if not block:
if not self._qsize():
raise Empty
elif timeout is None:
while not self._qsize():
self.not_empty.wait()
elif timeout < 0:
raise ValueError("'timeout' must be a non-negative number")
else:
endtime = time() + timeout
while not self._qsize():
remaining = endtime - time()
if remaining <= 0.0:
raise Empty
self.not_empty.wait(remaining)
item = self._get()
self.not_full.notify()
return item
get
【示例】
>>> import queue
>>> que=queue.Queue() # 创建队列,表示队列的长度,即元素个数
>>> que.put('a') #往队列中放入一个元素
>>> que.put('b') #往队列中再放入一个元素
>>> que.get()
>>> 'a' #依据先进先出原则,先取'a',若全部取出,再次获取元素,会wait等待生产者线程添加数据
4. put_nowait:
作用: 无阻塞的向队列中添加元素,若队列已满,不等待直接报错(full)
def put_nowait(self, item):
'''Put an item into the queue without blocking. Only enqueue the item if a free slot is immediately available.
Otherwise raise the Full exception.
'''
return self.put(item, block=False)
5.get_nowait:
作用: 无阻塞从队列中获取元素,若队列为空,不等待直接报错(empty)
def get_nowait(self):
'''Remove and return an item from the queue without blocking. Only get an item if one is immediately available. Otherwise
raise the Empty exception.
'''
return self.get(block=False)
6.qsize:
作用: 表示队列长度,即元素个数
def qsize(self):
'''Return the approximate size of the queue (not reliable!).'''
with self.mutex:
return self._qsize()
【示例】
>>> import queue #导入queue模块
>>> que=queue.Queue() #创建队列
>>> que.put(11)
>>> que.put(22) # 往队列中添加元素
>>> que.qsize() # 统计元素个数
>>> 2
7.join:
作用: 阻塞调用线程,直到队列中的所有任务都被处理完成,与task_done配合使用
[柠檬加醋]: 原文链接
collections模块简介的更多相关文章
- python collections模块详解
参考老顽童博客,他写的很详细,例子也很容易操作和理解. 1.模块简介 collections包含了一些特殊的容器,针对Python内置的容器,例如list.dict.set和tuple,提供了另一种选 ...
- (转)python collections模块详解
python collections模块详解 原文:http://www.cnblogs.com/dahu-daqing/p/7040490.html 1.模块简介 collections包含了一些特 ...
- python常见模块之collections模块
一.模块简介 在内置数据类型(dict.list.set.tuple)的基础上,collections模块还提供了几个额外的数据类型:Counter.deque.defaultdict.namedtu ...
- python从入门到大神---Python的jieba模块简介
python从入门到大神---Python的jieba模块简介 一.总结 一句话总结: jieba包是分词技术,也就是将一句话分成多个词,有多种分词模型可选 1.分词模块包一般有哪些分词模式(比如py ...
- re模块,正则表达式起别名和分组机制,collections模块,time与datetime模块,random模块
re模块和正则表达式别名和分组机制 命名分组 (1)分组--可以让我们从文本内容中提取指定模式的部分内容,用()来表示要提取的分组,需要注意的是分组 是在整个文本符合指定的正则表达式前提下进行的进一步 ...
- python collections模块
collections模块基本介绍 collections在通用的容器dict,list,set和tuple之上提供了几个可选的数据类型 namedtuple() factory function f ...
- collections 模块(namedtuple, deque, Counter )
基本介绍 我们都知道,Python拥有一些内置的数据类型,比如str, int, list, tuple, dict等, collections模块在这些内置数据类型的基础上,提供了几个额外的数据类型 ...
- 再谈collections模块defaultdict()和namedtuple()
defaultdict()和namedtuple()是collections模块里面2个很实用的扩展类型.一个继承自dict系统内置类型,一个继承自tuple系统内置类型.在扩展的同时都添加了额外的很 ...
- Python collections 模块用法举例
Python作为一个“内置电池”的编程语言,标准库里面拥有非常多好用的模块.比如今天想给大家 介绍的 collections 就是一个非常好的例子. 1.collections模块基本介绍 我们都知道 ...
随机推荐
- MobaXterm连接远程Linux服务器
MobaXterm是一个X服务器和一组的Unix命令(GNU/ Cygwin的)封装在一个单一的便携式exe文件的增强终端. MobaXterm包括一个巨大的multitab原生的Windows终端. ...
- C#类型简述
一.值类型 1.布尔类型 bool,范围 true false 2.整数类型 sbyte,范围 -128~127 byte,范围 0~255 short,范围 -32768~32767 ushort, ...
- iOS-加载数据的实现-MJRefresh
使用CocoaPods加载三方库: pod 'MJRefresh' MJRefresh类结构图: 具体实现方法和效果图: The drop-down refresh 01-Default self.t ...
- 【迷你微信】基于MINA、Hibernate、Spring、Protobuf的即时聊天系统:5.技术简介之Hibernate
目录 序言 配置 hibernate.cfg.xml配置文件 加载hibernate.cfg.html配置文件并获取Session 对象的注解配置 增删改查 具体的增删改查代码 数据库操作的封装 连接 ...
- javaweb 工程 tomcat启动报错的问你
2015-03-03 14:39:32,657 INFO (org.springframework.web.context.ContextLoader:296) - Root WebApplicati ...
- 微信iOS端无法执行jquery on()方法
微信iOS端无法执行jquery on()方法,click方法可以, 如下代码是不会执行的: $(function(){ $('body').on('click','.cka',function(){ ...
- hadoop上传文件失败报错(put: Cannot create file/eclipse.desktop._COPYING_. Name node is in safe mode.)
解决办法: 离开安全模式方法:执行以下命令即可 bin/hadoop dfsadmin -safemode leave 若不处理安全模式的话,web服务无法启动,dfsadmin report结果异 ...
- I-129表
http://www.uscis.gov/i-129 移民局使用的非移民性质的工作身份申请表(I-129)表格将于下月底正式作废,4月30日之后,公民和移民服务局只接受新的I-129表格. 据了解,非 ...
- mysqlbinlog 查看执行的sql (row模式)
记录一下:当bin-log的模式设置为 row时 不仅日志长得快 并且查看执行的sql时 也稍微麻烦一点:1.干扰语句多:2生成sql的编码需要解码. binlog_format=row 直接mysq ...
- html5标准
1.<!DOCTYPE html> html5标准网页声明,原先的是一串很长的字符串,现在是这个简洁形式,支持html5标准的主流浏览器都认识这个声明.表示网页采用html5 浅谈:htm ...