题意:给一棵树,在树中删除一些边,使得有一个连通块刚好为p个节点,问最少需要删除多少条边?

思路:

  因为任一条边都可能需要被删除,独立出来的具有p个节点的连通块可能在任意一处地方。先从根开始DFS,然后进行树DP,dp[t][i]表示在以t为根的子树中删除i个点需要删除多少条边。dp[t][n-p]有可能是答案了,但是这种仅考虑到从树上脱落掉部分子树,那么留下的连通块通常是与1号点(树根)相连的,那如果所需要的连通块是在某棵子树中呢?将所有可能的子树取出来,若该子树节点数>=p,那么就可以在该子树中再删除一些边,来取得最优解。

  注:若p=n,那么ans=0;若有某棵子树的节点数等于p,那么ans=1。

 //#include <bits/stdc++.h>
#include <cstdio>
#include <cstring>
#include <iostream>
#define pii pair<int,int>
#define INF 0x3f3f3f3f
#define LL long long
using namespace std;
const int N=; struct node
{
int from,to,next;
node(){};
node(int from,int to,int next):from(from),to(to),next(next){};
}edge[N*];
int head[N], dp[N][N], cnt[N], n, p, edge_cnt;
void add_node(int from,int to)
{
edge[edge_cnt]=node(from, to, head[from]);
head[from]=edge_cnt++;
} int DFS(int t)
{
int sum=dp[t][]=;
node e;
for(int i=head[t]; i!=-; i=e.next)
{
e=edge[i];
cnt[e.to]=DFS(e.to);
sum+=cnt[e.to]; //统计叶子数量 for(int j=sum; j>; j--)
for(int k=; k<=cnt[e.to] && k<=j; k++)
dp[t][j]=min(dp[t][j], dp[t][j-k]+dp[e.to][k]); //dp值表示至少需要断开多少条边
}
dp[t][sum+]=(t==?:); //断开edge(t,父亲)这条边,以t为根的子树就是sum+1个点了。
return sum+;
} int main()
{
freopen("input.txt", "r", stdin);
int a,b;
while(~scanf("%d%d",&n,&p))
{
memset(head, -, sizeof(head));
memset(dp, 0x3f, sizeof(dp));
memset(cnt, , sizeof(cnt));
edge_cnt=; for(int i=; i<n; i++)
{
scanf("%d%d",&a,&b);
add_node(a, b);
}
cnt[]=DFS(); //根一定是1 int ans=INF;
for(int i=; i<=n; i++)
{
if(cnt[i]-p>=) //子树i去掉cnt[i]-p个点后与i相连的连通块。
ans=min(ans, dp[i][cnt[i]-p]+);
ans=min(ans, dp[i][n-p]); //在此子树中
}
printf("%d\n", ans);
} /*
(1)计算从每棵子树断开k个节点的最少花费。
(2)断开某一子树与父亲的边,再从该子树中断开cnt-p条边(dp值已求),就能获得p个节点的树。
*/
return ;
}

AC代码

POJ 1947 Rebuilding Roads (树形DP)的更多相关文章

  1. POJ 1947 Rebuilding Roads 树形DP

    Rebuilding Roads   Description The cows have reconstructed Farmer John's farm, with its N barns (1 & ...

  2. POJ 1947 Rebuilding Roads 树形dp 难度:2

    Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissions: 9105   Accepted: 4122 ...

  3. DP Intro - poj 1947 Rebuilding Roads(树形DP)

    版权声明:本文为博主原创文章,未经博主允许不得转载. Rebuilding Roads Time Limit: 1000MS   Memory Limit: 30000K Total Submissi ...

  4. [poj 1947] Rebuilding Roads 树形DP

    Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 10653 Accepted: 4884 Des ...

  5. POJ 1947 Rebuilding Road(树形DP)

    Description The cows have reconstructed Farmer John's farm, with its N barns (1 <= N <= 150, n ...

  6. POJ 1947 Rebuilding Roads (树dp + 背包思想)

    题目链接:http://poj.org/problem?id=1947 一共有n个节点,要求减去最少的边,行号剩下p个节点.问你去掉的最少边数. dp[u][j]表示u为子树根,且得到j个节点最少减去 ...

  7. 树形dp(poj 1947 Rebuilding Roads )

    题意: 有n个点组成一棵树,问至少要删除多少条边才能获得一棵有p个结点的子树? 思路: 设dp[i][k]为以i为根,生成节点数为k的子树,所需剪掉的边数. dp[i][1] = total(i.so ...

  8. POJ 1947 Rebuilding Roads

    树形DP..... Rebuilding Roads Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 8188 Accepted: ...

  9. POJ1947 - Rebuilding Roads(树形DP)

    题目大意 给定一棵n个结点的树,问最少需要删除多少条边使得某棵子树的结点个数为p 题解 很经典的树形DP~~~直接上方程吧 dp[u][j]=min(dp[u][j],dp[u][j-k]+dp[v] ...

  10. POJ 1947 Rebuilding Roads(树形DP)

    题目链接 题意 : 给你一棵树,问你至少断掉几条边能够得到有p个点的子树. 思路 : dp[i][j]代表的是以i为根的子树有j个节点.dp[u][i] = dp[u][j]+dp[son][i-j] ...

随机推荐

  1. dubbo 使用 filter 报错解决

    dubbo可以用filter实现类似tomcat filter过滤器. 实现1.接口请求时间监控. 2.打印输入输出日志(输出日志有应用自己决定) 配置时出现报错. No such extension ...

  2. UVA - 11624 Fire! 双向BFS追击问题

    Fire! Joe works in a maze. Unfortunately, portions of the maze have caught on fire, and the owner of ...

  3. python接口自动化(三十七)-封装与调用--读取excel 数据(详解)

    简介 在进行软件接口测试或设计自动化测试框架时,一个不比可避免的过程就是: 参数化,在利用python进行自动化测试开发时,通常会使用excel来做数据管理,利用xlrd.xlwt开源包来读写exce ...

  4. 牛客 - 17968 - xor序列 - 线性基

    https://ac.nowcoder.com/acm/problem/17968 下面是错误的做法,因为题目要求必须使用x,而y在check的时候不一定用到等价于x的线性基来构成. 正确的做法是直接 ...

  5. 201621123016《Java程序设计》第三周学习总结

    1. 本周学习总结 1.初学面向对象,会学习到很多碎片化的概念与知识.尝试学会使用思维导图将这些碎片化的概念.知识点组织起来.请使用工具画出本周学习到的知识点及知识点之间的联系.步骤如下: 1.1 写 ...

  6. SQL 语句(原生)

    //查 //查询表里的所有数据 select * from 表名 //根据id等字段查询数据 select * from 表名 where 字段 = 值 or 字段 = 值 (例):select * ...

  7. DOM0、DOM2级事件

    JavaScript DOM0.DOM2级事件 1.DOM0级事件:on+事件类型 在html行内直接绑定,也就是通过行内js绑定的例如<span onclick="alert('1' ...

  8. MySQL索引的学习

    MySQL索引的学习 关于使用mysql索引的好处,合理的设计并使用mysql索引能够有效地提高查询效率.对于没有索引的表,单表查询可能几十万数据就是平静,在大型网站单日可能会产生几十万甚至几百万的数 ...

  9. Poj2299 Ultra-QuickSort(另附本质不同逆序对)

    Description 给定一个长度为 n(n≤5*10^5) 的序列 a,如果只允许进行比较和交换相邻两个数的操作求至少需要多少次交换才能把 a 从小到大排序. Input The input co ...

  10. css实现发光的input输入框

    效果图截图: 案例代码示下: <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> ...