→原题传送门←(by Hzwer)

「题目背景」

小奇不小心让糖果散落到了地上,它对着满地的彩色糖果胡思乱想。

「问题描述」

有 N 个彩色糖果在平面上。小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果。求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的颜色。

「输入格式」

包含多组测试数据,第一行输入一个正整数 T 表示测试数据组数。

接下来 T 组测试数据,对于每组测试数据,第一行输入两个正整数 N、K,分别表示点数和颜色数。

接下来 N 行,每行描述一个点,前两个数 x, y (|x|, |y| ≤ 2^30 – 1) 描述点的位置,最后一个数 z (1 ≤ z ≤ k) 描述点的颜色。

「输出格式」

对于每组数据在一行内输出一个非负整数 ans,表示答案。

「样例输入」

1

10 3

1 2 3

2 1 1

2 4 2

3 5 3

4 4 2

5 1 2

6 3 1

6 7 1

7 2 3

9 4 2

「样例输出」

5

「数据范围」

对于 30% 的数据,N ≤ 100;

对于 60% 的数据,N ≤ 5000;

对于 100% 的数据,N ≤ 100000,K ≤ 100000,T ≤ 3。


第N道小奇系列的题目了(之前好像也做过一道小奇的糖果来着,不过那是IOI改编,有点难)

模拟考的时候写了暴力居然没有分(!)

下面是自己写的题解:

  • 这是在糖果是撒在二维平面里的,所以我们可以通过其中一维的坐标离散化,然后通过枚举,转成单一一维里的问题。
  • 把横坐标离散化掉,按横坐标从左到右,把横坐标相邻的糖果用双向的链表串在一起(对于有不同颜色的序列,这样的操作很常见哦,记下来记下来)。
  • 所以每一次在两个相同颜色的糖果之间数一下其它糖果的数量,就可以来更新ans了,可以用树状数组来维护区间里的糖果数量。
  • 然后想象一条扫描线,从下到上扫一遍,每一次把扫描线上的点屏蔽掉,再更新一次答案,这样就可以完成对于水平线上糖果的更新了。
  • 那水平线下的怎么更新呢?一样的嘛,为了减少编程复杂度,我们把纵坐标取相反数,用一样的办法再做一次就可以了。

代码~

 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm> #define For(i,a,b) for(register int i=a;i<=b;++i)
#define Re register
#define Pn putchar('\n')
using namespace std;
const int N=1e5+;
int Lc[N],Rc[N],lst[N];
int X[N],sX[N];
struct Point{
int x,y,cl,id;
}pt[N];
int c[N],n,m,x,y,Kx,ans=; inline void read(int &v){
v=; bool fg=;
char c=getchar(); if(c=='-')fg=;
while(c<''||c>''){c=getchar(); if(c=='-')fg=;}
while(c>=''&&c<=''){v=v*+c-'',c=getchar(); if(c=='-')fg=;}
if(fg)v=-v;
}
void write(int x){
if(x>)write(x/);
int xx=x%;
putchar(xx+'');
}
bool cmpX(const Point &a,const Point &b){
return a.x<b.x;
}
bool cmpY(const Point &a,const Point &b){
return a.y<b.y;
} int LB(int x){
return x&(-x);
}
void upD(int k,int dt){
for(Re int i=k;i<=n;i+=LB(i)){
c[i]+=dt;
}
}
int Qry(int k){
int ans=;
for(Re int i=k;i>=;i-=LB(i)){
ans+=c[i];
}
return ans;
} void makeA(int lx,int rx){
if(lx>rx)return;
int tp=Qry(rx)-Qry(lx-);
ans=max(tp,ans);
}
void PickupCandy(){ X[]=; X[n+]=n+;
memset(lst,,sizeof(lst));
memset(c,,sizeof(c)); sort(pt+,pt+n+,cmpX); For(i,,n){
upD(pt[i].x,);
} For(i,,n){
int ID=pt[i].id;
int prC=lst[pt[i].cl];
Lc[ID]=prC; Rc[ID]=n+;
if(prC) Rc[prC]=ID;
makeA(X[prC]+,X[ID]-);
lst[pt[i].cl]=ID;
}
For(i,,Kx){
makeA(X[lst[i]]+,X[n+]);
} sort(pt+,pt+n+,cmpY); int Px=;
For(i,,n){
while(Px<=n&&pt[i].y==pt[Px].y){
upD(X[pt[Px].id],-);
Px++;
}
int ID=pt[i].id;
Lc[Rc[ID]]=Lc[ID]; Rc[Lc[ID]]=Rc[ID];
makeA(X[Lc[ID]]+,X[Rc[ID]]-);
}
return;
} int main(){
//freopen("candy.in","r",stdin);
//freopen("candy.out","w",stdout);
int T; read(T);
while(T--){
read(n); read(Kx);
ans=;
For(i,,n){
read(pt[i].x); read(pt[i].y); read(pt[i].cl);
pt[i].id=i;
sX[i]=pt[i].x;
}
sort(sX+,sX+n+);
For(i,,n){
X[i]=lower_bound(sX+,sX+n+,pt[i].x)-sX;
pt[i].x=X[i];
}
PickupCandy();
For(i,,n)pt[i].y*=-;
PickupCandy();
write(ans); Pn;
}
// fclose(stdin); fclose(stdout);
return ;
}

【BZOJ4548】小奇的糖果的更多相关文章

  1. 【题解】BZOJ4548 小奇的糖果(树状数组)

    [题解]BZOJ4548 小奇的糖果(树状数组) 说在前面:我有个同学叫小奇,他有一个朋友叫达达,达达特爱地理和旅游,初中经常AK地理,好怀恋和他已经达达一起到当时初中附近许多楼盘的顶楼逛的时光... ...

  2. BZOJ4548 小奇的糖果

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  3. Bzoj4548 小奇的糖果(链表+树状数组)

    题面 Bzoj 题解 很显然,我们只需要考虑单独取线段上方的情况,对于下方的把坐标取反再做一遍即可(因为我们只关心最终的答案) 建立树状数组维护一个横坐标区间内有多少个点,维护双向链表实现查询一个点左 ...

  4. 【题解】 BZOJ4548 小奇的糖果

    本文同步在学弟ZCDHJ的个人博客发布,审核需要一段时间. 传送门 考虑题目中获得的糖果并不包含所有的颜色这句话,发现相当于我们可以直接选取某一个颜色强制不能选(这样子一定最优). 然后就可以考虑分开 ...

  5. bzoj4548: 小奇的糖果 题解

    题目链接 题解 不包含所有颜色 就强制不选一个颜色 图中圆点颜色相同 矩形越大,包括的点一定不比其一小部分少 如图所示,最大矩形只有3种 离散化\(x\)坐标 然后按\(y\)排序 每次取出颜色的前驱 ...

  6. 【BZOJ4548】小奇的糖果 set(链表)+树状数组

    [BZOJ4548]小奇的糖果 Description 有 N 个彩色糖果在平面上.小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果,使得获得的糖果并不包含所有的 ...

  7. 【BZOJ-4548&3658】小奇的糖果&Jabberwocky 双向链表 + 树状数组

    4548: 小奇的糖果 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 103  Solved: 47[Submit][Status][Discuss] ...

  8. 小奇的糖果(candy)

    [题目背景]小奇不小心让糖果散落到了地上,它对着满地的彩色糖果胡思乱想.[问题描述]有 N 个彩色糖果在平面上. 小奇想在平面上取一条水平的线段,并拾起它上方或下方的所有糖果.求出最多能够拾起多少糖果 ...

  9. 【bzoj4548】小奇的糖果 STL-set+树状数组

    题目描述 平面上有n个点,每个点有一种颜色.对于某一条线段,选择所有其上方或下方的点.求:在不包含所有颜色的点的前提下,选择的点数最多是多少.(本题中如果存在某颜色没有相应的点,那么选择任何线段都不算 ...

随机推荐

  1. 九度OJ 1098:字母统计 (计数)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3720 解决:1809 题目描述: 输入一行字符串,计算其中A-Z大写字母出现的次数 输入: 案例可能有多组,每个案例输入为一行字符串. 输 ...

  2. eclipse中怎么删除重复的console

    eclipse中不同的应用会开启不同的console,所以并不是重复. 如图: Terminate标志/操作按钮,可以停止当前的执行,以及标志此Console是Terminated状态: Remove ...

  3. myeclipse10.0如何集成Git

    现需要给myeclipse10.0集成git工具,经过搜索资料,现整理如下方法: myeclipse10.0对应的Git版本应该为:egit版本为2.3.1 下载地址:http://wiki.ecli ...

  4. 【C++基础学习】类型声明

    1.初始化 在C++中,初始化与赋值操作是完全不同的两个操作.初始化不是赋值,初始化的含义是创建变量时赋予其一个初始值,而赋值的含义是把对象的当前值擦除,而以一个新值来代替. 初始化的方式有: 1 i ...

  5. angularjs ng-repeat倒叙

    <div ng-app="myApp" ng-controller="customersCtrl"> <table> <tr ng ...

  6. uboot显示logo的时候发现颜色偏黄【学习笔记】

    平台信息:内核:linux3.0.68 系统:android6.0平台:rk3288 将一张图片烧录进logo分区,发现在uboot读取这张图片并显示的时候发现颜色偏黄,解决办法,在烧录bmp图片的时 ...

  7. cookie VS sessionstorge VS localstorge

    虽然cookie , localstorge , sessionstorge三者都有存储的功能,但是还是有区别, git上地址:https://github.com/lily1010/cookie-s ...

  8. SVN与CVS比较-怎度网

    SVN与CVS比较 所有的文档都显示SVN可以取代CVS,同时SVN的问题和缺点都被隐藏了.不幸的是,我们并不认为SVN是CVS的替代品,尽管很多缺陷都被修改了.更有甚者,它甚至让人重回VSS.CVS ...

  9. <VS>MFC程序显示命令行窗口

    编写MFC程序时,想打印出调试信息,使用cout后,发现程序并没有像想象中那样自动弹出命令行窗口,要输出的信息也没地方去查看.百度后知道要手动调出命令行窗口,才可以看到输出的信息.   百度上介绍了两 ...

  10. the generation has been cancelled because errors have been found by the check model

    生成物理模型出现这个错误的话,那就打开“生成物理模型”(快捷键 ctrl+shift+p) 然后找到 Detail → Option 接着讲Check mode复选框去掉.