【矩阵】RQ/QR 分解
Multiple View Geometry in Computer Vision A.4.1.1 (page 579)
将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 $ R $ 与一个正交阵(orthogonal matrix) $ Q $ 的乘积。要求矩阵 $ A $ 的秩为3,即满秩。
所谓矩阵 $ Q $ 正交是指 $ Q^TQ=I $, $ Q $ 可以看作是一个旋转矩阵。此旋转矩阵由三个子旋转矩阵点乘而来,即 $ Q = Q_xQ_yQ_z $ 。$ Q_x, Q_y, Q_z $ 如下:
\[
Q_x = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos (roll) & -\sin (roll)\\
0 & \sin (roll) & \cos (roll) \\
\end{bmatrix}
\]
\[
Q_y = \begin{bmatrix}
\cos (pitch) & 0 & \sin (pitch) \\
0 & 1 & 0 \\
-\sin (pitch) & 0 & \cos (pitch) \\
\end{bmatrix}
\]
\[
Q_z = \begin{bmatrix}
\cos (yaw) & -\sin (yaw) & 0 \\
\sin (yaw) & \cos (yaw) & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]
将矩阵 $ A $ 右乘一个矩阵,相当于将 $ A $ 进行一次初等列变换。
由 \[ A = RQ = RQ_z^TQ_y^TQ_x^T \] 得 \[ AQ_xQ_yQ_z = R \]
将 $ A $ 右乘 $ Q_x $ 是将 $ A $ 的第一列保持不变,第二列和第三列进行线性组合,解释如下:
\[ A = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix} \]
\[ AQ_x = \begin{bmatrix}
A_{11} & cA_{12} + sA_{13} & -sA_{12} + cA_{13} \\
A_{21} & cA_{22} + sA_{23} & -sA_{22} + cA_{23} \\
A_{31} & cA_{32} + sA_{33} & -sA_{32} + cA_{33}
\end{bmatrix} \]
上式省略了 $ roll $ ,将 $ [AQ_x]_{32} $ 置为0。加上 \(c^2 + s^2 = 1\) 的条件,可以算出 \(c, s\),求得 $ Q_x $ 。
$ AQ_x $ 的结果右乘 $ Q_y $ 是将第二列保持不变,第一列和第三列进行线性组合,将 $ [AQ_xQ_y]_{31} $ 置为0,求得 $ Q_y $ 。
$ AQ_xQ_y $ 的结果右乘 $ Q_z $ 是将第三列保持不变,第一列和第二列进行线性组合,将 $ [AQ_xQ_yQ_z]_{21} $ 置为0,求得 $ Q_x $ 。
经过三次右乘(初等列变换)可以得到上三角阵 $ R $ 。
最后由计算得到的 $ Q_x, Q_y, Q_z $ 通过 $ Q = Q_z^TQ_y^TQ_x^T $ ,得到 $ A $ 的 RQ 分解。
对于 QR、LQ、QL 分解使用类似的方式进行计算。QR 与 QL 分解是将矩阵 $ A $ 进行初等行变换。
【矩阵】RQ/QR 分解的更多相关文章
- 矩阵的QR分解
#include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...
- 矩阵的QR分解(三种方法)Python实现
1.Gram-Schmidt正交化 假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵: 假设正交化后的矩阵为Q=[A,B],我 ...
- QR 分解
将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质. 预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...
- 机器学习中的矩阵方法03:QR 分解
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...
- 矩阵QR分解
1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量 相互垂直,且模长为1: 如果将 orthonormal 向量按列组织成矩阵,矩阵为 ...
- QR分解与最小二乘
主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...
- QR分解与最小二乘(转载自AndyJee)
转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...
- QR分解
从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...
- QR分解迭代求特征值——原生python实现(不使用numpy)
QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...
随机推荐
- BeanCopier
cglib是一款比较底层的操作java字节码的框架. 下面通过拷贝bean对象来测试BeanCopier的特性: public class OrderEntity { private int id; ...
- Fortinet Security Fabric
Fortinet Security Fabric 这个世界从不固步自封.在技术方面,这意味着解决方案供应商必须保持不断创新和探索才能实现生存与发展. 在网络安全领域,这更是至理名言.许多黑客都是才华横 ...
- (转)enable_from_this方法的使用与陷阱
转自http://blog.chinaunix.net/uid-442138-id-2122464.html enable_from_this 的使用与实现原理说明: shared_from_ ...
- [洛谷P5216]DLS 采花
题目大意:有$n$个数,任意排列,排列后第$i$个数会产生贡献当且仅当$1\sim i-1$中的数不是它的因子,问所有排列的贡献和 题解:发现一个数要产生贡献要求所有它的因子在它的右边,设有$cnt_ ...
- GridView中网络图片延迟加载导致高度计算失败的问题
在使用下拉刷新以及加载更多控件的时候,出现了列表上滚不完的现象,经过半天的分析,最后得出结论:由于图片采用了延迟加载,导致列表按照没有加载图片时候的大小进行布局,相关的加载更多控件也就傻逼了. 最终解 ...
- Git-balabala
想必大家都听说过且用过Github(没听说过-.-),我也一直用Github管理我的代码到现在,如果你只是将其作为自己私有的代码仓库,那么平时用得最多的就是git clone, git add以及gi ...
- 【整体二分】【P3834】 【模板】可持久化线段树 1(主席树)
Description 给定一个长度为 \(n\) 的序列, \(m\) 次操作静态查询区间第 \(k\) 大 Input 第一行是 \(n,m\) 下一行描述这个序列 下面 \(m\) 行描述操作 ...
- MySQL 第二篇:库操作
一 系统数据库 information_schema: 虚拟库,不占用磁盘空间,存储的是数据库启动后的一些参数,如用户表信息.列信息.权限信息.字符信息等performance_schema: MyS ...
- [VS2012] 无法查找或打开 PDB 文件
http://www.cnblogs.com/southernduck/archive/2012/11/23/2784966.html 用VS2012调试一个控制台程序的时候,出现一下提示信息: “w ...
- salt源码安装
salt是什么? 一种全新的基础设施管理方式,部署轻松,在几分钟内可运行起来,扩展性好,很容易管理上万台服务器,速度够快,服务器之间秒级通讯. salt底层采用动态的连接总线, 使其可以用于编配, 远 ...