Multiple View Geometry in Computer Vision A.4.1.1 (page 579)

将一个 3x3 矩阵 $ A $ 进行 RQ 分解是将其分解成为一个上三角阵 $ R $ 与一个正交阵(orthogonal matrix) $ Q $ 的乘积。要求矩阵 $ A $ 的秩为3,即满秩。

所谓矩阵 $ Q $ 正交是指 $ Q^TQ=I $, $ Q $ 可以看作是一个旋转矩阵。此旋转矩阵由三个子旋转矩阵点乘而来,即 $ Q = Q_xQ_yQ_z $ 。$ Q_x, Q_y, Q_z $ 如下:

\[
Q_x = \begin{bmatrix}
1 & 0 & 0 \\
0 & \cos (roll) & -\sin (roll)\\
0 & \sin (roll) & \cos (roll) \\
\end{bmatrix}
\]

\[
Q_y = \begin{bmatrix}
\cos (pitch) & 0 & \sin (pitch) \\
0 & 1 & 0 \\
-\sin (pitch) & 0 & \cos (pitch) \\
\end{bmatrix}
\]

\[
Q_z = \begin{bmatrix}
\cos (yaw) & -\sin (yaw) & 0 \\
\sin (yaw) & \cos (yaw) & 0 \\
0 & 0 & 1 \\
\end{bmatrix}
\]

将矩阵 $ A $ 右乘一个矩阵,相当于将 $ A $ 进行一次初等列变换。

由 \[ A = RQ = RQ_z^TQ_y^TQ_x^T \] 得 \[ AQ_xQ_yQ_z = R \]

将 $ A $ 右乘 $ Q_x $ 是将 $ A $ 的第一列保持不变,第二列和第三列进行线性组合,解释如下:

\[ A = \begin{bmatrix}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{bmatrix} \]

\[ AQ_x = \begin{bmatrix}
A_{11} & cA_{12} + sA_{13} & -sA_{12} + cA_{13} \\
A_{21} & cA_{22} + sA_{23} & -sA_{22} + cA_{23} \\
A_{31} & cA_{32} + sA_{33} & -sA_{32} + cA_{33}
\end{bmatrix} \]

上式省略了 $ roll $ ,将 $ [AQ_x]_{32} $ 置为0。加上 \(c^2 + s^2 = 1\) 的条件,可以算出 \(c, s\),求得 $ Q_x $ 。

$ AQ_x $ 的结果右乘 $ Q_y $ 是将第二列保持不变,第一列和第三列进行线性组合,将 $ [AQ_xQ_y]_{31} $ 置为0,求得 $ Q_y $ 。

$ AQ_xQ_y $ 的结果右乘 $ Q_z $ 是将第三列保持不变,第一列和第二列进行线性组合,将 $ [AQ_xQ_yQ_z]_{21} $ 置为0,求得 $ Q_x $ 。

经过三次右乘(初等列变换)可以得到上三角阵 $ R $ 。

最后由计算得到的 $ Q_x, Q_y, Q_z $ 通过 $ Q = Q_z^TQ_y^TQ_x^T $ ,得到 $ A $ 的 RQ 分解。

对于 QR、LQ、QL 分解使用类似的方式进行计算。QR 与 QL 分解是将矩阵 $ A $ 进行初等行变换。

【矩阵】RQ/QR 分解的更多相关文章

  1. 矩阵的QR分解

    #include <cstdio> #include <cstdlib> #include <algorithm> #include <cmath> # ...

  2. 矩阵的QR分解(三种方法)Python实现

    1.Gram-Schmidt正交化 假设原来的矩阵为[a,b],a,b为线性无关的二维向量,下面我们通过Gram-Schmidt正交化使得矩阵A为标准正交矩阵: 假设正交化后的矩阵为Q=[A,B],我 ...

  3. QR 分解

    将学习到什么 介绍了平面旋转矩阵,Householder 矩阵和 QR 分解以入相关性质.   预备知识 平面旋转与 Householder 矩阵是特殊的酉矩阵,它们在建立某些基本的矩阵分解过程中起着 ...

  4. 机器学习中的矩阵方法03:QR 分解

    1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其 ...

  5. 矩阵QR分解

    1 orthonormal 向量与 Orthogonal 矩阵 orthonormal 向量定义为 ,任意向量  相互垂直,且模长为1: 如果将  orthonormal 向量按列组织成矩阵,矩阵为  ...

  6. QR分解与最小二乘

    主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现   一.QR分解 R分解法是三种将矩阵分解的方式之一.这种方式,把矩阵分解成一个正交矩阵与一个上三角矩阵的 ...

  7. QR分解与最小二乘(转载自AndyJee)

    转载网址:http://www.cnblogs.com/AndyJee/p/3846455.html 主要内容: 1.QR分解定义 2.QR分解求法 3.QR分解与最小二乘 4.Matlab实现 一. ...

  8. QR分解

        从矩阵分解的角度来看,LU和Cholesky分解目标在于将矩阵转化为三角矩阵的乘积,所以在LAPACK种对应的名称是trf(Triangular Factorization).QR分解的目的在 ...

  9. QR分解迭代求特征值——原生python实现(不使用numpy)

    QR分解: 有很多方法可以进行QR迭代,本文使用的是Schmidt正交化方法 具体证明请参考链接 https://wenku.baidu.com/view/c2e34678168884868762d6 ...

随机推荐

  1. redis压力测试工具-----redis-benchmark

    redis做压测可以用自带的redis-benchmark工具,使用简单 压测命令:redis-benchmark -h 127.0.0.1 -p 6379 -c 50 -n 10000 压测需要一段 ...

  2. BZOJ5305 HAOI2018苹果树(概率期望+动态规划)

    每种父亲编号小于儿子编号的有标号二叉树的出现概率是相同的,问题相当于求所有n个点的此种树的所有结点两两距离之和. 设f[n]为答案,g[n]为所有此种树所有结点的深度之和,h[n]为此种树的个数. 枚 ...

  3. 回车”(carriage return)和”换行”(line feed)的区别和来历-(附:ASCII表)

    这两天研究小票打印机编程手册,遇到这样一个问题:     LF,即Line Feed,中文意思“换行”:CR,即Carriage Return,中文意思“回车”.但是我们通常把这两个混为一谈.既然设置 ...

  4. java的object类函数详解

    1.clone方法(浅拷贝) 保护方法,实现对象的浅复制,只有实现了Cloneable接口才可以调用该方法,否则抛出CloneNotSupportedException异常. 主要是JAVA里除了8种 ...

  5. Gauss Prime UVA - 1415

    题意:给出a和b判定是否为高斯素数 解析: 普通的高斯整数i = sqrt(-1) 高斯整数是素数当且仅当: a.b中有一个是零,另一个是形为或其相反数的素数: 或a.b均不为零,而为素数. 这题 提 ...

  6. PE文件解析 基础篇

    PE文件解析 基础篇 来源 https://bbs.pediy.com/thread-247114.htm 前言 之前学习了PE格式,为了更好的理解,决定写一个类似LoadPE的小工具. 编译器是VS ...

  7. svmrank 的误差惩罚因子c选择 经验

    C是一个由用户去指定的系数,表示对分错的点加入多少的惩罚,当C很大的时候,分错的点就会更少,但是过拟合的情况可能会比较严重,当C很小的时候,分错的点可能会很多,不过可能由此得到的模型也会不太正确,所以 ...

  8. MT【142】Bachet 问题,进位制

    问题: 满足下面两种限制条件下要想称出40以内的任何整数重量,最少要几个砝码: i)如果砝码只能在天平的某一边; ii)如果砝码可以放在天平的两边. 提示:对于 i)先证明如下事实: \[\textb ...

  9. 【刷题】BZOJ 2820 YY的GCD

    Description 神犇YY虐完数论后给傻×kAc出了一题给定N, M,求1<=x<=N, 1<=y<=M且gcd(x, y)为质数的(x, y)有多少对kAc这种傻×必然 ...

  10. 模板:插头dp

    前言: 严格来讲有关dp的都不应该叫做模板,因为dp太活了,但是一是为了整理插头dp的知识,二是插头dp有良好的套路性,所以姑且还叫做模板吧. 这里先推荐一波CDQ的论文和这篇博客http://www ...