2653: middle
2653: middle
分析:
二分答案+主席树。
对于中位数的经典做法,就是二分一个数,将小于的变成-1,大于等于的变成+1,那么如果sum>=0(因为+1包括等于),L=mid+1,否则R=mid-1。
那么考虑二分一个中位数(当然只二分出现过的数即可),然后向上面一样判断。
因为二分的数字只有n个,可以建立n颗只包含-1和+1的权值线段树,发现第i小的权值线段树与第i+1小的权值线段树只有一个位置不同,所以可以类似可持久化的思路,每次只去建立一条链。
查询的区间有很多个,不能挨个查询它们的和,由于查询最大值,所以可以再在线段树上维护左端最大子段和,右端最大子段和。
代码:
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<iostream>
#include<cmath>
#include<cctype>
#include<set>
#include<queue>
#include<vector>
#include<map>
#define pa pair<int,int>
using namespace std;
typedef long long LL; inline int read() {
int x=,f=;char ch=getchar();for(;!isdigit(ch);ch=getchar())if(ch=='-')f=-;
for(;isdigit(ch);ch=getchar())x=x*+ch-'';return x*f;
} const int N = ;
struct Node{
int sum, Lmx, Rmx;
}T[N * ];
int ls[N * ], rs[N * ], Root[N], Index, n;
pa A[N]; Node operator + (const Node &A,const Node &B) {
Node res;
res.sum = A.sum + B.sum;
res.Lmx = max(A.Lmx, A.sum + B.Lmx);
res.Rmx = max(B.Rmx, A.Rmx + B.sum);
return res;
}
void build(int l,int r,int &rt) {
rt = ++Index;
if (l == r) {
T[rt].sum = T[rt].Lmx = T[rt].Rmx = ; return ;
}
int mid = (l + r) >> ;
build(l, mid, ls[rt]); build(mid + , r, rs[rt]);
T[rt] = T[ls[rt]] + T[rs[rt]];
}
void update(int l,int r,int &rt,int pre,int p) {
if (!rt) rt = ++Index;
if (l == r) {
T[rt].sum = T[rt].Lmx = T[rt].Rmx = -; return ;
}
int mid = (l + r) >> ;
if (p <= mid) {
rs[rt] = rs[pre];
update(l, mid, ls[rt], ls[pre], p);
} else {
ls[rt] = ls[pre];
update(mid + , r, rs[rt], rs[pre], p);
}
T[rt] = T[ls[rt]] + T[rs[rt]];
}
Node query(int l,int r,int rt,int L,int R) {
if (L <= l && r <= R) return T[rt];
int mid = (l + r) >> ;
if (R <= mid) return query(l, mid, ls[rt], L, R);
else if (L > mid) return query(mid + , r, rs[rt], L, R);
else return query(l, mid, ls[rt], L, R) + query(mid + , r, rs[rt], L, R);
}
bool check(int x,int l1,int r1,int l2,int r2) {
Node a, b, c; b.sum = ;
if (l2 > r1 + ) b = query(, n, Root[x], r1 + , l2 - );
a = query(, n, Root[x], l1, r1);
c = query(, n, Root[x], l2, r2);
return (a.Rmx + b.sum + c.Lmx) >= ;
}
int main() {
n = read();
for (int i = ; i <= n; ++i) {
A[i].first = read(), A[i].second = i;
}
sort(A + , A + n + );
build(, n, Root[]);
for (int i = ; i <= n; ++i)
update(, n, Root[i], Root[i - ], A[i - ].second);
int c[], m = read(), ans = , pos;
while (m --) {
for (int i = ; i < ; ++i) c[i] = (read() + ans) % n + ;
sort(c, c + );
int l = , r = n;
while (l <= r) {
int mid = (l + r) >> ;
if (check(mid, c[], c[], c[], c[])) pos = mid, l = mid + ;
else r = mid - ;
}
ans = A[pos].first;
printf("%d\n", ans);
}
return ;
}
2653: middle的更多相关文章
- bzoj 2653: middle (主席树+二分)
2653: middle Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2522 Solved: 1434[Submit][Status][Disc ...
- 【BZOJ】2653: middle
2653: middle Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 2381 Solved: 1340[Submit][Status][Disc ...
- [BZOJ 2653] middle(可持久化线段树+二分答案)
[BZOJ 2653] middle(可持久化线段树+二分答案) 题面 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整. 给你一个长度为n的序 ...
- BZOJ 2653 middle
AC通道:http://www.lydsy.com/JudgeOnline/problem.php?id=2653 题目大意:多组询问,求左右端点在规定范围内移动所能得到的最大中位数. [分析] 求中 ...
- BZOJ 2653: middle 主席树 二分
https://www.lydsy.com/JudgeOnline/problem.php?id=2653 因为是两个方向向外延伸所以不能对编号取前缀和(这里只有前缀和向后传递的性质,不是实际意义的和 ...
- BZOJ 2653 middle | 主席树
题目: http://www.lydsy.com/JudgeOnline/problem.php?id=2653 题解: 设答案为ans,把大于等于ans的记为1,小于的记为-1,这样可以知道当前an ...
- bzoj 2653 middle (可持久化线段树)
middle Time Limit: 20 Sec Memory Limit: 512 MBSubmit: 1981 Solved: 1097[Submit][Status][Discuss] D ...
- BZOJ 2653: middle [主席树 中位数]
传送门 题意: 一个长度为n的序列a,设其排过序之后为b,其中位数定义为b[n/2],其中a,b从0开始标号,除法取下整.给你一个 长度为n的序列s.回答Q个这样的询问:s的左端点在[a,b]之间,右 ...
- bzoj 2653 middle 二分答案 主席树判定
判断中位数是否可行需要将当前的解作为分界,大于其的置为1,小于为-1,然后b-c必选,ab,cd可不选,这个用线段树判定就好 但不能每次跑,所以套主席树,按权值排序,构建主席树,更新时将上一个节点改为 ...
随机推荐
- Excel截取特定字符后面的值
应该用到三个字符串函数:LEFT.RIGHT.MID 1.LEFT函数: 用法:LEFT(要提取字符所在单元格,从左侧开始提取的个数) 例如:=LEFT(A1,2) 意思是从A1单元格提取前两个字符. ...
- php实现session入库
为什么要把session存入数据库?有什么用? 可以:统计在线人数,现实多站点session共享(通行证),控制同个账号登入人数等. 要实现session的入库,有关键的几个基本知识: session ...
- 在windows下的hdfs客户端编写
在windows下的hdfs客户端编写 新建一个工程,右键 properties -> java build path -> libraries 和之前一样的操作,这次 new 一个 us ...
- 简单的dp加贪心
题目链接:传送门 这个题目让我纠结了好久,之后恍然大悟是求最长的递减序列,并加上贪心的算法,如果有大于两个的发射系统,应该判断使导弹的高度与此时个个发射系统的高度比较,选取高度差最小的去执行这次的拦截 ...
- jquery.form.js mvc 上传文件 layer 选择框与等待效果
HTML <form role="form" id="form1"> <div class="form-group"> ...
- CSS盒子模型之CSS3可伸缩框属性(Flexible Box)
CSS盒子模型(下) 一.CSS3可伸缩框(Flexible Box) 可伸缩框属性(Flexible Box)是css3新添加的盒子模型属性,有人称之为弹性盒模型,它的出现打破了我们经常使用的浮动布 ...
- hdu2824 The Euler function(欧拉函数个数)
版权声明:本文为博主原创文章,未经博主同意不得转载. vasttian https://blog.csdn.net/u012860063/article/details/36426357 题目链接:h ...
- 【原创】大叔经验分享(53)kudu报错unable to find SASL plugin: PLAIN
kudu安装后运行不正常,master中找不到任何tserver,查看tserver日志发现有很多报错: Failed to heartbeat to master:7051: Invalid arg ...
- [整理记录备忘]oracle数据库相关问题与解决
检查死锁方式 用dba用户执行以下语句,可以查看到被死锁的语句. select sql_text from v$sql where hash_value in (select sql_hash_val ...
- 动态验证码处理UI自动化获取处理
解决思路两种:1.直接linux catalina.out读取:一分每10s轮询出现新的直接读取返回<br>2.缓存注入cookie,先手动登录获取session 然后通过注入user,p ...