一.概念

  MapReduce是一种编程模型,用于大规模数据集(大于1TB)的并行运算。概念"Map(映射)"和"Reduce(归约)",是它们的主要思想。它极大地方便了编程人员在不会分布式并行编程的情况下,将自己的程序运行在分布式系统上。 当前的软件实现是指定一个Map(映射)函数,用来把一组键值对映射成一组新的键值对,指定并发的Reduce(归约)函数,用来保证所有映射的键值对中的每一个共享相同的键组

  大规模数据处理时, MapReduce 在三个层面上的基本构思 。
  如何对付大数据处理:分而治之
  对相互间不具有计算依赖关系的大数据,实现并行最自然的办法就是采取分而治之的策略。
  上升到抽象模型: Mapper 与 Reducer
  MPI等并行计算方法缺少高层并行编程模型,为了克服这一缺陷,MapReduce借鉴了Lisp函数式语言中的思想,用Map和Reduce两个函数提供了高层的并行编程抽象模型。
  上升到构架:统一构架,为程序员隐藏系统层细节
  MPI等并行计算方法缺少统一的计算框架支持,程序员需要考虑数据存储、划分、分发、结果收集、错误恢复等诸多细节;为此,MapReduce设计并提供了统一的计算框架,为程序员隐藏了绝大多数系统
层面的处理细节。

  不可分拆的计算任务或相互间有依赖关系的数据无法进行并行计算!

  序列化是指将结构化的数据转化为字节流以便在网络上传输或写入到磁盘进行永久存的过程,反序列化是指将字节流转换为结构化对象的逆过程。序列化常见应用场景:进程间通信和永久存储。
   Hadoop中,序列化要满足:紧凑,快速,可扩展,支持互相操作。Hadoop中使用了自己的序列化格式Writable。它绝对紧凑、速度快、但不容易扩展

  自定义数据类型:
   实现Writable接口,以便该数据能被序列化后完成网络传输或文件输入/输出。
   如果该数据需要作为主键key使用,或需要比较数值大小时,则需要实现WritableComparable接口。

  集群上最紧俏的资源便是网络带宽,因此尽量减少map和reduce阶段的网络传输对MapReduce的性能提升是很重要的。Hadoop为map任务的输出指定了一个合并函数(combiner),合并函数的输出作为reduce的输入。Combiner是的map的输出结果更加紧凑,同时减少了写磁盘和网络传输的数据量。 Combiner 又称为Local Reducer 。

Hadoop整理三(Hadoop分布式计算框架MapReduce)的更多相关文章

  1. Hadoop 学习之路(三)—— 分布式计算框架 MapReduce

    一.MapReduce概述 Hadoop MapReduce是一个分布式计算框架,用于编写批处理应用程序.编写好的程序可以提交到Hadoop集群上用于并行处理大规模的数据集. MapReduce作业通 ...

  2. Hadoop 系列(三)—— 分布式计算框架 MapReduce

    一.MapReduce概述 Hadoop MapReduce 是一个分布式计算框架,用于编写批处理应用程序.编写好的程序可以提交到 Hadoop 集群上用于并行处理大规模的数据集. MapReduce ...

  3. Hadoop 三剑客之 —— 分布式计算框架 MapReduce

    一.MapReduce概述 二.MapReduce编程模型简述 三.combiner & partitioner 四.MapReduce词频统计案例         4.1 项目简介      ...

  4. Hadoop整理四(Hadoop分布式计算框架MapReduce)

    Apache Hadoop YARN (Yet Another Resource Negotiator,另一种资源协调者)是一种新的 Hadoop 资源管理器,它是一个通用资源管理系统,可为上层应用提 ...

  5. 分布式计算框架-MapReduce 基本原理(MP用于分布式计算)

    hadoop最主要的2个基本的内容要了解.上次了解了一下HDFS,本章节主要是了解了MapReduce的一些基本原理. MapReduce文件系统:它是一种编程模型,用于大规模数据集(大于1TB)的并 ...

  6. 2_分布式计算框架MapReduce

    一.mr介绍 1.MapReduce设计理念是移动计算而不是移动数据,就是把分析计算的程序,分别拷贝一份到不同的机器上,而不是移动数据. 2.计算框架有很多,不是谁替换谁的问题,是谁更适合的问题.mr ...

  7. hadoop基础----hadoop理论(四)-----hadoop分布式并行计算模型MapReduce具体解释

    我们在前一章已经学习了HDFS: hadoop基础----hadoop理论(三)-----hadoop分布式文件系统HDFS详细解释 我们已经知道Hadoop=HDFS(文件系统,数据存储技术相关)+ ...

  8. Hadoop第三课

    1.3Hadoop基础知识 1.3.1术语解释 1.Hadoop1.0 • 第一代Hadoop,由分布式文件系统HDFS 和分布式计算框架MapReduce组成 • HDFS由一个NameNode和多 ...

  9. hadoop深入研究:(十三)——序列化框架

    hadoop深入研究:(十三)--序列化框架 Mapreduce之序列化框架(转自http://blog.csdn.net/lastsweetop/article/details/9376495) 框 ...

随机推荐

  1. 我购买byd的几点逻辑

    1.伯克希尔哈撒韦长期看好byd不是无道理的,每次转型都是那么的成功,说明管理层很好. 2.2015年6月员工持股计划均价55元,目前48元. 3.新能源汽车龙头. 4.云轨解决了小城市建设地铁过于浪 ...

  2. 回溯算法——解决n皇后问题

    所谓回溯(backtracking)是通过系统地搜索求解问题的方法.这种方法适用于类似于八皇后这样的问题:求得问题的一个解比较困难,但是检查一个棋局是否构成解很容易. 不多说,放上n皇后的回溯问题代码 ...

  3. 05.UIDynamic

    CHENYILONG Blog 05.UIDynamic Fullscreen © chenyilong. Powered by Postach.io Blog

  4. pta 一

    7-1 打印沙漏 (20 分) 本题要求你写个程序把给定的符号打印成沙漏的形状.例如给定17个“*”,要求按下列格式打印 ***** *** * *** ***** 所谓“沙漏形状”,是指每行输出奇数 ...

  5. hdu 1254 推箱子(双重bfs)

    题目链接 Problem Description 推箱子是一个很经典的游戏.今天我们来玩一个简单版本.在一个M*N的房间里有一个箱子和一个搬运工,搬运工的工作就是把箱子推到指定的位置,注意,搬运工只能 ...

  6. c# 生成随机N位数字串(每位都不重复)

    /// <summary> /// 生成随机数字窜 /// </summary> /// <param name="Digit">位数</ ...

  7. rabbitmq之后台管理和用户设置(三)

    前言 前面介绍了erlang环境的安装和rabbitmq环境安装,接下来介绍rabbitmq的web管理和用户设置. 启用后台管理插件 通过后台管理插件我们可以动态监控mq的流量,创建用户,队列等. ...

  8. 管道和xargs区别

    一直弄不懂,管道不就是把前一个命令的结果作为参数给下一个命令吗,那在 | 后面加不加xargs有什么区别 NewUserFF 写道: 懒蜗牛Gentoo 写道: 管道是实现“将前面的标准输出作为后面的 ...

  9. Ubuntu下软件安装方式、PATH配置、查找安装位置

    Ubuntu 18.04, 安装方式 目前孤知道的Ubuntu下安装软件方式有3种(命令): 1.make 2.apt/apt-get 3.dpkg 方式1基于软件源码安装,需要经历配置(可选).编译 ...

  10. html-示例代码

    <!DOCTYPE html> <html lang="en" xmlns="http://www.w3.org/1999/html" xml ...